Limits & Continuity 1.2 – Limits by Substitution

Some limits can be found by direct substitution, while others cannot. The "Rules for Limits" exist to help in determining which limits can be found by substitution.

Rules for Limits

For any constants *a* and *c*, and any positive integer n: 1. $\lim_{x\to c} a = a$

- 2. $\lim_{x \to c} x^n = c^n$
- 3. $\lim_{x \to c} \sqrt[n]{x} = \sqrt[n]{c} \ (c > 0 \text{ if } n \text{ is even})$
- 4. If $\lim_{x\to c} f(x)$ and $\lim_{x\to c} g(x)$ both exist, then

a. $\lim_{x \to c} [f(x) + g(x)] = \lim_{x \to c} f(x) + \lim_{x \to c} g(x)$

b.
$$\lim_{x \to c} [f(x) - g(x)] = \lim_{x \to c} f(x) - \lim_{x \to c} g(x)$$

c.
$$\lim_{x \to c} [f(x) \cdot g(x)] = \lim_{x \to c} f(x) \cdot \lim_{x \to c} g(x)$$

d.
$$\lim_{x \to c} \frac{f(x)}{g(x)} = \frac{\lim_{x \to c} f(x)}{\lim_{x \to c} g(x)} \quad if \ \lim_{x \to c} g(x) \neq 0$$

Summary of Rules of Limits

For functions composed of additions, subtractions, multiplications, divisions, powers, and roots, limits may be evaluated by direct substitution, provided that the resulting expression is defined.

$$\lim_{x \to c} f(x) = f(c)$$

Ex A: Finding Limits by Direct Substitution #1) Find $\lim_{x \to 4} \sqrt{x}$.

$$\lim_{X \to u} \sqrt{X} = \sqrt{y}$$

$$\lim_{X \to u} \sqrt{X} = 2$$

#2) Find
$$\lim_{x \to 6} \frac{x^2}{x+3}$$
.
 $\lim_{x \to 6} \frac{x^2}{x+3} = \frac{(6)^2}{(6)+3}$
 $= \frac{36}{9}$
 $\lim_{x \to 6} \frac{x^2}{x+3} = 4$

#3) Find
$$\lim_{x \to 3} (2x^2 - 4x + 1)$$
.

$$\lim_{x \to 3} (5x^2 - 4x + 1) = 2(3)^2 - 4(3) + 1$$

$$= 2(3)^2 - 4(3) + 1$$

$$= 2(3)^2 - 4(3) + 1$$

$$= 2(3)^2 - 4(3) + 1$$

$$= 2(3)^2 - 4(3) + 1$$

$$= 2(3)^2 - 4(3) + 1$$

$$= 2(3)^2 - 4(3) + 1$$

$$= 2(3)^2 - 4(3) + 1$$

$$= 2(3)^2 - 4(3) + 1$$

$$= 2(3)^2 - 4(3) + 1$$

$$= 2(3)^2 - 4(3) + 1$$

$$= 2(3)^2 - 4(3) + 1$$

$$= 2(3)^2 - 4(3) + 1$$

$$= 2(3)^2 - 4(3) + 1$$

$$= 2(3)^2 - 4(3) + 1$$

$$= 2(3)^2 - 4(3) + 1$$

$$= 2(3)^2 - 4(3) + 1$$

$$= 2(3)^2 - 4(3) + 1$$

$$= 2(3)^2 - 4(3) + 1$$

$$= 2(3)^2 - 4(3) + 1$$

$$= 2(3)^2 - 4(3) + 1$$

$$= 2(3)^2 - 4(3) + 1$$

$$= 2(3)^2 - 4(3) + 1$$

$$= 2(3)^2 - 4(3) + 1$$

$$= 2(3)^2 - 4(3) + 1$$

$$= 2(3)^2 - 4(3) + 1$$

$$= 2(3)^2 - 4(3) + 1$$

$$= 2(3)^2 - 4(3) + 1$$

Limits & Continuity 1.2 – Limits by Substitution

