Two-sided, Left and Right Limits

$\lim _{x \rightarrow c} f(x)=L$ iff both one-sided limits $\lim _{x \rightarrow c^{-}} f(x)$ and $\lim _{x \rightarrow c^{+}} f(x)$ exist and equal the same number L.

Ex A: For the piecewise linear function find the following limits by direct substitution.
$f(x)= \begin{cases}x+1 & \text { if } x \leq 3 \\ 8-2 x & \text { if } x>3\end{cases}$
a. $\lim _{x \rightarrow 3^{-}} f(x)$
b. $\lim _{x \rightarrow 3^{+}} f(x)$
c. $\lim _{x \rightarrow 3} f(x)$

Limits of Functions of Two Variables

Some limits involve two variables, with only one variable approaching a limit.

Ex B: Find the limit of each function.
\#1) $\lim _{h \rightarrow 0}\left(x^{2}+x h+h^{2}\right)$
\#2) $\lim _{h \rightarrow 0}\left(3 x^{2}+5 x h+1\right)$

Ex C: Finding One-Sided Limits
For the piecewise linear function find the following limits by graphing.

$$
f(x)= \begin{cases}x+1 & \text { if } x \leq 3 \\ 8-2 x & \text { if } x>3\end{cases}
$$

a. $\lim _{x \rightarrow 3^{-}} f(x)$
b. $\lim _{x \rightarrow 3^{+}} f(x)$
c. $\lim _{x \rightarrow 3} f(x)$

Limits \& Continuity
 1.3 - Limits By Graphing

Infinite Limits

We may use the symbols ∞ (infinity) and $-\infty$ (negative infinity) to indicate that the values of a function become arbitrarily large positive or arbitrarily large negative. Dashed lines on a graph, where a function approaches ∞ or $-\infty$, are called vertical asymptotes.

Ex D: For each function graphed below, use the limit notation with ∞ and $-\infty$ to describe its behavior as x approaches the vertical asymptote from the left, from the right, and from both sides.

From the left

Careful. To say that a limit exists is to say that it is a single number. Since ∞ is not a number, if $\lim _{x \rightarrow c} f(x)=\infty$, then the limit does not exists (d.n.e.)

From the left

From the right

From both sides

