Limits \& Continuity

1.3 - Limits By Graphing

Two-sided, Left and Right Limits

$\lim _{x \rightarrow c} f(x)=L$ iff both one-sided limits $\lim _{x \rightarrow c^{-}} f(x)$ and $\lim _{x \rightarrow c^{+}} f(x)$ exist and equal the same number L.

Ex A: For the piecewise linear function find the following limits by direct substitution.
$f(x)= \begin{cases}x+1 & \text { if } x \leq 3 \\ 8-2 x & \text { if } x>3\end{cases}$
a. $\begin{aligned} \lim _{x \rightarrow 3^{-}} f(x)=\lim _{x \rightarrow 3^{-}}(x+1) & =(3)+1 \\ & =4\end{aligned}$
b. $\begin{aligned} \lim _{x \rightarrow 3^{+}} f(x)=\lim _{x \rightarrow 3^{+}}(8 \cdot 2 x) & =8-2(3) \\ & =8-6\end{aligned}$

$$
\begin{aligned}
& =8-6 \\
& =2
\end{aligned}
$$

c. $\lim _{x \rightarrow 3} f(x)=\ln e$

Limits of Functions of Two Variables

Some limits involve two variables, with only one variable approaching a limit.

Ex B: Find the limit of each function.

$$
\text { \#1) } \begin{aligned}
& \lim _{h \rightarrow 0}\left(x^{2}+x h+h^{2}\right)=x^{2}+x(0)+(0)^{2} \\
&=x^{2} \\
& \text { \#2) } \begin{aligned}
\lim _{h \rightarrow 0}\left(3 x^{2}+5 x h+1\right) & =3 x^{2}+5 x(0)+1 \\
& =3 x^{2}+1
\end{aligned} \$=\text { 友 }
\end{aligned}
$$

Ex C: Finding One-Sided Limits For the piecewise linear function find the following limits by graphing.

$$
f(x)= \begin{cases}x+1 & \text { if } x \leq 3 \\ 8-2 x & \text { if } x>3\end{cases}
$$

a. $\lim _{x \rightarrow 3^{-}} f(x)=4$
b. $\lim _{x \rightarrow 3^{+}} f(x)=2$
c. $\lim _{x \rightarrow 3} f(x)=d \cdot \sim$.

Limits \& Continuity

1.3 - Limits By Graphing

Infinite Limits

We may use the symbols ∞ (infinity) and $-\infty$ (negative infinity) to indicate that the values of a function become arbitrarily large positive or arbitrarily large negative. Dashed lines on a graph, where a function approaches ∞ or $-\infty$, are called vertical asymptotes.

Ex D: For each function graphed below, use the limit notation with ∞ and $-\infty$ to describe its behavior as x approaches the vertical asymptote from the left, from the right, and from both sides.
a.

From the left $\lim _{x \rightarrow 2^{-}} f(x)=\infty, d n e$

From the right $\lim _{x \rightarrow 0^{+}} f(x)=-\infty$ dal $x \rightarrow 2^{+}$

From both sides $\lim _{x \rightarrow 0} f(x)=$ dne

Careful. To say that a limit exists is to say that it is a single number. Since ∞ is not a number, if $\lim _{x \rightarrow c} f(x)=\infty$, then the limit does not exists (d.n.e.)
b.

From the left $\lim f(x)=\infty$, dhe $x \rightarrow 3^{-}$

From the right $\lim _{x \rightarrow 3^{+}} f(x)=\infty, d n e$

$$
X \rightarrow 3^{+}
$$

From both sides $\lim f(x)=\infty . d n e$

$$
x \rightarrow 3
$$

