Continuity from PreCalculus

A function is said to be continuous at c if its graph passes through the point at $x=c$ without a "hole" or a "jump"

Continuity from Calculus

A function f is continuous at c if the following three conditions hold:

1. $f(c)$ is defined
2. $\lim _{x \rightarrow c} f(x)$ exists
3. $\lim _{x \rightarrow c} f(x)=f(c)$
f is discontinuous at c if one or more of these conditions fails to be true.

Which Functions Are Continuous?

If functions f and g are continuous at c, then the following are also continuous at c :

1. $f \pm g$
2. $a \bullet f \quad[$ for any constant a]
3. $f \bullet g$
4. $f / g \quad[$ if $g(c) \neq 0]$
5. $f(g(x)) \quad[$ for f continuous at $g(c)]$

All polynomial functions are continuous. Rational functions are not continuous when the denominator $=$ 0 (vertical asymptote). Piece-wise functions have the potential to be continuous or not.

Limits \& Continuity
1.4 - Continuity

Ex A: Determine if each function is continuous. If discontinuous, state why.

\#2) Discont.ruous. $\lim f(x) \neq f(c)$

\#3) Discont.ruous. $\lim f(x)=d n$?.

Ex B: Determine if each function is continuous. If discontinuous, state where it is discontinuous and why.
\#1) $\quad f(x)=x^{3}-3 x^{2}-x+3$

\#2) $\quad f(x)=\frac{1}{(x-1)^{2}}$

\#3) $\quad f(x)= \begin{cases}2 x+1 & \text { if } x<2 \\ -2 x+9 & \text { if } x \geq 2\end{cases}$

\#4) $\quad f(x)=\left\{\begin{array}{cc}x^{2}+1 & \text { if } x<4 \\ 5 x-1 & \text { if } x \geq 4\end{array}\right.$

$$
\begin{array}{ll}
f(x)=x^{2}+1 & f(x)=5 x-1
\end{array}
$$

$$
f(4)=(4)^{2}+1
$$

$$
f(4)=5(4)-1
$$

$$
f(4)=16+1
$$

$$
f(4)=20-1
$$

$$
f(4)=17
$$

$$
f(4)=19
$$

