Limits \& Continuity
 1.5 A - Slopes, Rates of Change, and Derivatives

A: If a tangent line were drawn at each point, state whether the slopes are positive, negative or zero at each point

\#2)

\#4)

B: Find the slopes of each tangent line by counting rise and run.

C: Use the graph of each function to make a rough sketch of the derivative showing where $f^{\prime}(x)$ is positive, negative and zero.

\#8)

Limits \& Continuity
 1.5 A - Slopes, Rates of Change, and Derivatives

D: Find the average rate of change (that means find the slope $m=\frac{\Delta y}{\Delta x}$) of the given function at the given x -values
\#9) $y=x^{2}+7 x$
a. $(1,8)$ and $(3,30)$

$$
\frac{\Delta y}{\Delta x}=\frac{(30)-(8)}{(3)-(1)}=\frac{22}{2}=11
$$

b. $(1,8)$ and $(2,18)$

$$
\frac{\Delta y}{\Delta x}=\frac{(18)-(8)}{(2)-(1)}=\frac{10}{1}=10
$$

c. $(1,8)$ and $(1.1,8.91)$

$$
\frac{\Delta y}{\Delta x}=\frac{(8.91)-(8)}{(1.1)-(1)}=\frac{.91}{.1}=9.1
$$

d. $(1,8)$ and $(1.01,8.0901)$

$$
\frac{\Delta y}{\Delta x}=\frac{(8.0901)-(8)}{(1.01)-(1)}=\frac{.0901}{.01}=9.01
$$

E: Find the instantaneous rate of change of the function, then find it specifically at the point given.
\#10) $f(x)=x^{2}+7 x$ at $\mathrm{x}=1$ (When finished, compare this answer and problem with \#9)

$$
\begin{aligned}
\frac{\Delta y}{\Delta x} & =\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h} \\
& =\lim _{h \rightarrow 0} \frac{\left[(x+h)^{2}+7(x+h)\right]-\left[x^{2}+7 x\right]}{h} \quad \begin{aligned}
& \frac{d}{d x} f(1)=2(1)+7 \\
&=2+7 \\
& \frac{d}{d x} f(1)=9
\end{aligned} \\
& =\lim _{h \rightarrow 0} \frac{x^{x}+2 h x+h^{2}+7 x+7 h-x^{2}-7 x}{h} \\
& =\lim _{h \rightarrow 0} \frac{2 h x+h^{2}+7 h}{h} \\
& =\lim _{h \rightarrow 0} \frac{h(2 x+h+7)}{h} \\
& =\lim _{h \rightarrow 0} \\
& =2 x+h+7) \\
\frac{\Delta y}{\Delta x} & =2 x+7
\end{aligned}
$$

\#11) $f(x)=x^{2}+5$ at $x=3$

Limits \& Continuity
 1.5 A - Slopes, Rates of Change, and Derivatives

\#12) $f(x)=2 x-4$ at $x=5$

F: Find $f^{\prime}(x)$ by definition.
\#14) $f(x)=x^{2}+x+1$

$$
\begin{aligned}
f^{\prime}(x) & =\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h} \\
& =\lim _{h \rightarrow 0} \frac{\left[(x+h)^{2}+(x+h)+1\right]-\left[x^{2}+x+1\right]}{h} \\
& =\lim _{h \rightarrow 0} \frac{x+2 h x+h^{2}+x+h+x-x^{2}-x-1}{h} \\
& =\lim _{h \rightarrow 0} \frac{2 h x+h^{2}+h}{h} \\
& =\lim _{h \rightarrow 0} \frac{h(2 x+h+1)}{h} \\
& =\lim _{h \rightarrow 0}(2 x+h+1) \\
& =2 x+(0)+1 \\
f^{\prime}(x) & =2 x+1
\end{aligned}
$$

\#15) $f(x)=8$

$$
\begin{aligned}
\frac{\Delta y}{\Delta x} & =\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h} \\
& =\lim _{h \rightarrow 0} \frac{[8]-[8]}{h} \\
& =\lim _{h \rightarrow 0} \frac{0}{h} \\
& =\lim _{h \rightarrow 0} 0 \\
\frac{\Delta y}{\Delta x} & =0
\end{aligned}
$$

Limits \& Continuity
1.5 A - Slopes, Rates of Change, and Derivatives
\#16) $f(x)=\sqrt{x}$ (hint: at some point multiply by 1 in the form of $\left.\frac{\sqrt{x+h}+\sqrt{x}}{\sqrt{x+h}+\sqrt{x}}\right)$

$$
\begin{aligned}
f^{\prime}(x)= & =\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h} \\
= & \lim _{h \rightarrow 0} \frac{(\sqrt{x+h})-(\sqrt{x})}{h} \\
= & \lim _{h \rightarrow 0} \frac{(\sqrt{x+h}-\sqrt{x})}{h} \cdot(\sqrt{x+h}+\sqrt{x}) \\
= & \lim _{h \rightarrow 0} \frac{x+h-x}{h(\sqrt{x+h}+\sqrt{x})} \\
= & \left.\lim _{h \rightarrow 0} \frac{h}{h(\sqrt{x+h})}+\sqrt{x}\right) \\
= & \lim _{h \rightarrow 0} \frac{1}{\sqrt{x+h}+\sqrt{x}} \\
= & \frac{1}{\sqrt{x+(0)}+\sqrt{x}} \\
= & \frac{1}{\sqrt{x}+\sqrt{x}} \\
f^{\prime}(x)= & \frac{1}{2 \sqrt{x}}
\end{aligned}
$$

\#17) $f(x)=\frac{2}{x}$

$$
\begin{aligned}
\frac{\Delta y}{\Delta x} & =\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h} \\
& =\lim _{h \rightarrow 0} \frac{\left[\frac{2}{x+h}\right]-\left[\frac{2}{x}\right]}{h} \\
& =\lim _{h \rightarrow 0} \frac{\frac{2 x}{(x+h) x}-\frac{2(x+h)}{x(x+h)}}{h} \\
& =\lim _{h \rightarrow 0} \frac{\frac{2 x-2 x-2 h}{x(x+h)}}{h} \\
& =\lim _{h \rightarrow 0} \frac{\frac{-2 h}{x(x+h)}}{h} \\
& =\lim _{h \rightarrow 0} \frac{-2 h}{x(x+h)} \cdot \frac{1}{h} \\
& =\lim _{h \rightarrow 0} \frac{-2}{x(x+h)} \\
\frac{\Delta y}{\Delta x} & =\frac{-2}{x[x+(0)]} \\
& =\frac{-2}{x[x]} \\
\frac{\Delta y}{\Delta x} & =\frac{-2}{x^{2}}
\end{aligned}
$$

\#18) $f(x)=\pi$

$$
\begin{aligned}
f^{\prime}(x) & =\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h} \\
& =\lim _{h \rightarrow 0} \frac{[\pi]-[\pi]}{h} \\
& =\lim _{h \rightarrow 0} \frac{0}{h} \\
& =\lim _{h \rightarrow 0} \\
f^{\prime}(x) & =(\because)
\end{aligned}
$$

\#19) $f(x)=\frac{x}{5}$

$$
\begin{aligned}
f^{\prime}(x) & =\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h} \\
& =\lim _{h \rightarrow 0} \frac{\left.\frac{x+h}{5}\right]-\left[\frac{x}{5}\right]}{h} \\
& =\lim _{h \rightarrow 0} \frac{\frac{x+h-x}{5}}{h} \\
& =\lim _{h \rightarrow 0} \frac{h}{5} \cdot \frac{1}{h} \\
& =\lim _{h \rightarrow 0} \frac{\frac{1}{5}}{h} \\
f^{\prime}(x) & =\frac{1}{5}
\end{aligned}
$$

