Limits \& Continuity
 1.5 A - Slopes, Rates of Change, and Derivatives

A: If a tangent line were drawn at each point, state whether the slopes are positive, negative or zero at each point
\#1)

\#2)

\#3)

\#4)

B: Find the slopes of each tangent line by counting rise and run.
\#5)

\#6)

C: Use the graph of each function to make a rough sketch of the derivative showing where $f^{\prime}(x)$ is positive, negative and zero.

\#8)

Limits \& Continuity 1.5 A - Slopes, Rates of Change, and Derivatives

D: Find the average rate of change (that means find the slope $m=\frac{\Delta y}{\Delta x}$) of the given function at the given x -values
\#9) $y=x^{2}+7 x$
a. $(1,8)$ and $(3,30)$
b. $(1,8)$ and $(2,18)$
c. $(1,8)$ and $(1.1,8.91)$
d. $(1,8)$ and $(1.01,8.0901)$
\#11) $f(x)=x^{2}+5$ at $x=3$
E: Find the instantaneous rate of change of the function, then find it specifically at the point given.
\#10) $f(x)=x^{2}+7 x$ at $\mathrm{x}=1$ (When finished, compare this answer and problem with \#9)

1.5A - Slopes, Rates of Change, and Derivatives

\#12) $f(x)=2 x-4$ at $\mathrm{x}=5$
\#13) $f(x)=\frac{1}{x^{2}}$ at $\mathrm{x}=7$

F: Find $f^{\prime}(x)$ by definition.
\#14) $f(x)=x^{2}+x+1$
\#15) $f(x)=8$

Limits \& Continuity
 1.5A - Slopes, Rates of Change, and Derivatives

\#16) $f(x)=\sqrt{x}$ (hint: at some point multiply by 1 in the form of $\left.\frac{\sqrt{x+h}+\sqrt{x}}{\sqrt{x+h}+\sqrt{x}}\right)$
\#18) $f(x)=\pi$
\#19) $f(x)=\frac{x}{5}$

