A: If a tangent line were drawn at each point, state whether the slopes are positive, negative or zero at each point

#1)

B: Find the slopes of each tangent line by counting rise and run.

C: Use the graph of each function to make a rough sketch of the derivative showing where f'(x) is positive, negative and zero.

#8)

D: Find the average rate of change (that means find the slope $m = \frac{\Delta y}{\Delta x}$) of the given function at the given x-values #9) $y = x^2 + 7x$	E: Find the instantaneous rate of change of the function, then find it specifically at the point given. #10) $f(x) = x^2 + 7x$ at x = 1 (When finished, compare this answer and problem with #9)
a. (1, 8) and (3, 30)	
b. (1, 8) and (2, 18)	
c. (1, 8) and (1.1, 8.91)	#11) $f(x) = x^2 + 5$ at x = 3
d. (1, 8) and (1.01, 8.0901)	

#12) $f(x) = 2x - 4$ at x = 5	F: Find $f'(x)$ by definition. #14) $f(x) = x^2 + x + 1$
#13) $f(x) = \frac{1}{x^2}$ at x = 7	#15) $f(x) = 8$

#16) $f(x) = \sqrt{x}$ (hint: at some point multiply by 1 in the form of $\frac{\sqrt{x+h}+\sqrt{x}}{\sqrt{x+h}+\sqrt{x}}$)	#18) $f(x) = \pi$
	~
#17) $f(x) = \frac{2}{x}$	#19) $f(x) = \frac{x}{5}$