Advanced Integration
10.1D - Integration by Parts

Find $\int x(4 x-2)^{5} d x$ in two different ways.
\#1) Use integration by parts.

$$
\int x(4 x-2)^{5} d x
$$

$$
\begin{aligned}
& u=x \\
& d v=(4 x-2)^{5} d x \\
& p=4 x-3 \\
& d u=d x \\
& v=\int p^{5} \frac{d p}{4} \\
& v=\frac{1}{24} p^{6} \\
& v=\frac{1}{24}(4 x-2)^{6} \\
& \begin{array}{l}
\int u d v=u v-\int v d u \\
\int x(4 x-2)^{5} d x=x\left(\frac{1}{24}(4 x-2)^{6}\right)-\int \frac{1}{2 x}(4 x-2)^{6} d x
\end{array} \\
& =\frac{1}{24} \times(4 x-2)^{6}-\frac{1}{24} \int p^{6} \frac{d p}{4} \\
& =\frac{1}{24} \times(4 x-2)^{6}-\frac{1}{96} \cdot \frac{1}{7} p^{7}+C \\
& =\frac{1}{24} \times(4 x-2)^{6}-\frac{1}{672}(4 x-2)^{7}+C
\end{aligned}
$$

\#2) Use the substitution $u=4 x-2$ (so x is replaced by $\frac{1}{4}(u+2)$ and then multiply out the integrand.

$$
\begin{aligned}
& \int x(4 x-2)^{5} d x \\
& \int x(4 x-2)^{5} d x \\
= & \left(x u^{5} \frac{d u}{4} \quad \frac{d u}{d x}=4 x-2\right. \\
= & \frac{1}{4} \int \frac{1}{4}(u+2) u^{5} d u \\
= & \frac{1}{16} \int\left(u^{6}+2 u^{5}\right) d u \\
= & \frac{1}{16}\left[\frac{1}{7} u^{7}+\frac{1}{3} u^{6}\right]+C \\
= & \frac{1}{112}(4 x-2)^{7}+\frac{1}{48}(4 x-2)^{6}+C
\end{aligned}
$$

Derive each formula by using integration by parts on the left-handed side. (Assume $\mathrm{n}>0$).
\#3)

$$
\begin{aligned}
& \int x^{n} e^{x} d x=x^{n} e^{x}-n \int x^{n-1} e^{x} d x \\
& \left.\begin{array}{l}
u=x^{n} \\
d u=n x^{n-1} d x\left|\begin{array}{l}
d v=e^{x} d x \\
v=e^{x}
\end{array}\right| \\
\int u d v
\end{array}\right)=u v-\int v d u \\
& \int x^{n} e^{x} d x
\end{aligned} \begin{aligned}
n & e^{x}-\int e^{x} n x^{n-1} d x \\
& =x^{n} e^{x}-n \int e^{x} x^{n-1} d x
\end{aligned}
$$

\#4) Use the formula in number \#3 to find the integral $\int x^{2} e^{x} d x$ (Hint: You may use a little déjà vu)

$$
\begin{aligned}
\int x^{2} e^{x} d x & =x^{2} e^{x}-\partial \int x^{1} e^{x} d x \\
\int x^{2} e^{x} d x & =x^{2} e^{x}-2 \int x e^{x} d x \\
& =x^{2} e^{x}-2\left[x e^{x}-1 \cdot \int x^{0} e^{x} d x\right] \\
& =x^{2} e^{x}-2\left[x e^{x}-e^{x}\right]+C \\
& =x^{2} e^{x}-2 x e^{x}-2 e^{x}+C
\end{aligned}
$$

Advanced Integration
10.1D - Integration by Parts

I've Got Worms
\#5) After watching Dumb and Dumber, George begins a new business venture called I've Got Worms. If I've Got Worms marginal revenue function is $M R(x)=x e^{x / 4}$, find the revenue function.

$$
R(x)=\int x e^{\frac{x}{4}} d x
$$

$$
=u v-S v d u
$$

$$
=x\left(4 e^{\frac{x}{4}}\right)-\int 4 e^{\frac{x}{4}} d x
$$

$$
R(x)=4 x e^{\frac{x}{4}}-16 e^{\frac{x}{4}}+C
$$

$$
0=4(0) e^{\frac{6}{4}}-16 e^{\frac{0}{4}}+C
$$

$$
0=0-16 e^{0}+C
$$

$$
0=-16+c
$$

$$
16=c
$$

$$
R(x)=4 x e^{\frac{x}{4}}-16 e^{\frac{x}{4}}+16
$$

Trust Fund
\#6) George trusts that someone will fund his company Trust Fund Inc with a continuous stream of income of $4 t$ million dollars per year, where t is the number of years that the company has been in operation. Find the present value of this stream of income over the first 10 years at a continuous interest rate of 10%.

$$
\simeq 5 / 05.696447
$$

$$
\approx 5 / 05,696,447
$$

$$
\begin{aligned}
& P V=\int 4 t e^{-0.10 t} d t \\
& \int u d v=u v-\int v d u \\
& =4 t\left(-10 e^{-.10 t}\right)-\int-10 e^{-.10 t} 4 d t \\
& =-40 t e^{-0.10 t}+40 \int e^{-.10 t} d t \\
& d u=4 d t \\
& \frac{d u}{d t}=4 \quad \int d v=\int e^{-0.10 t} d t \\
& v=-10 e^{-.10 t} \\
& =-40 t e^{-0.10 t}-400 e^{-0.10 t}+C \\
& \left.P V\right|_{0} ^{10}=\left[-40(10) e^{-0.10(10)}-400 e^{-0.10(10)}\right]-\left[-40(0) e^{-0.10(0)}-400 e^{-0.10(0)}\right] \\
& =\left[-400 e^{-1}-400 e^{-1}\right]-\left[0-400 e^{0}\right] \\
& =-\frac{800}{e}+400
\end{aligned}
$$

Advanced Integration 10.1D - Integration by Parts

Hill Moist - Beverage of Champions
\#7) George spilled his delicious sugary beverage, Hill Moist, on the floor. Being a genuine go-getter, George lofts an old unwashed, semi putrid towel on the spill. Hill Moist is absorbed into the towel at the rate of $t e^{-0.5 t}$ milligrams per hour, where t is the number of hours since the towel was first lofted onto the spill. Find the total amount of Hill Moist absorbed during the first 5 hours.
a. Solve $H M=\int t e^{-\frac{1}{2} t} d t$

$$
=u v-S u d u
$$

$$
\begin{array}{ll}
u=t & d v=e^{-\frac{1}{2} t} d t \\
d u=d t & v=-2 e^{-\frac{1}{3} t}
\end{array}
$$

$$
=t\left(-2 e^{-\frac{1}{2} t}\right)-\int-2 e^{-\frac{1}{5} t} d t
$$

$$
=-2 t e^{-\frac{1}{2} t}-4 e^{-\frac{1}{2} t}+C
$$

$$
\left.H M\right|_{0} ^{5}=\left(-2(5) e^{-\frac{1}{2}(5)}-4 e^{-\frac{1}{5}(5)}\right)-\left(-\frac{1}{2}(0) e^{-\frac{1}{2}(0)}-4 e^{-\frac{1}{5}(0)}\right)
$$

$$
=-\frac{10}{e^{e_{2}}}-\frac{4}{e^{5 / 2}}+4
$$

$$
=\frac{-14}{e^{5 / 2}}+4
$$

≈ 2.85 milligrams The towel will absorb a bout
b. Check your answer with your
Done
Done

Hill Moistened Towels
\#8) George begins advertising a new product, Hill Moistened Towels, and finds that after t weeks the product is gaining customer recognition at the rate of $t^{2} \ln t$ customers per week (for $t \geq 1$). Find the total gain in recognition from the end of week 1 to the end of week 6 .

$$
\begin{aligned}
& C R=\int t^{2} \ln t d t \\
&=u=\ln t \\
& d u=\frac{1}{t} d t \\
&=\ln t \cdot \frac{1}{3} t^{3}-\int \frac{1}{3} t^{3}\left(\frac{1}{t} d t\right) \\
&=\frac{1}{3} t^{3} \ln t-\frac{1}{3} \int t^{2} d t \\
&=\frac{1}{3} t^{3} \ln t-\frac{1}{9} t^{3}+C \\
&\left.C R\right|_{1} ^{6}=\left(\frac{1}{3}(6)^{3} \ln 6-\frac{1}{9}(6)^{3}\right)-\left(\frac{1}{3}(1)^{3} \ln 1-\frac{1}{9}(1)^{3}\right) \\
&\left.=\left[\frac{216}{3} \ln 6-\frac{216}{9}\right]-\left[\frac{1}{3}(1) \cdot 0-\frac{1}{9}(1)^{3}\right)\right]
\end{aligned}
$$

$$
=72 \ln 6-\frac{215}{9}
$$

$$
\approx 105 \text { customers }
$$

From weeks 1 to 5 abort 105 mare customes w:11

Advanced Integration
10.1D - Integration by Parts
\#9) Find the area under the curve $y=x \ln x$ and above the x-axis from $x=1$ to $x=2$.

$$
A=\int_{1}^{2} x \ln x \quad \begin{array}{ll}
u=\ln x & d v=x d x \\
d u=\frac{1}{x} d x & v=\frac{1}{2} x^{2}
\end{array}
$$

Sudv = uv- Svdu

$$
\begin{aligned}
& =\ln x\left(\frac{1}{2} x^{2}\right)-\int \frac{1}{2} x^{2} \cdot \frac{1}{x} d x \\
& =\frac{1}{2} x^{2} \ln x-\frac{1}{2} \int x d x \\
& =\frac{1}{2} x^{2} \ln x-\frac{1}{4} x^{2}+C \\
\left.A\right|^{2} & =\left(\frac{1}{2}(2) \ln 2-\frac{1}{4}(2)^{2}\right)-\left(\frac{1}{2}(1)^{2} \ln 1-\frac{1}{4}(1)^{2}\right) \\
& =\left[\frac{1}{2}(4) \ln 2-\frac{1}{4}(4)\right]-\left[\frac{1}{2}(1) \cdot 0-\frac{1}{4}(1)\right] \\
& =[2 \ln 2-1]-\left[-\frac{1}{4}\right] \\
& =\left(2 \ln 2-\frac{3}{4}\right) 4 n^{2}
\end{aligned}
$$

Find each integral by repeating integration by parts.
\#10) $\int(x+1)^{2} e^{x} d x$

$$
\int u d v=u v-\int v d u
$$

$$
\begin{array}{ll}
u=(x+1)^{2} & d v=e^{x} d x \\
d u=2(x+1)(1) d x & v=e^{x}
\end{array}
$$

$$
\begin{aligned}
& \int(x+1)^{2} e^{x} d x=(x+1)^{2} e^{x}-\int e^{x} \partial(x+1) d x \\
&=(x+1)^{2} e^{x}-2 \int(x+1) e^{x} d x \quad \begin{array}{l}
u=x+1
\end{array} \\
&=(x+1)^{x} e^{x}-\partial\left[(x+1) e^{x}-\int e^{x} d x\right] d u=d x \\
& v=e^{x} d x \\
&=(x+1)^{2} e^{x}-\partial(x+1) e^{x}+\partial e^{x}+C
\end{aligned}
$$

Advanced Integration 10.1D - Integration by Parts
\#11) $\int x^{2}(\ln x)^{2} d x$

$$
\begin{array}{ll}
u=(\ln x)^{2} & d v=x^{2} d x \\
d u=2(\ln x) \cdot \frac{1}{x} d x & v=\frac{1}{3} x^{3}
\end{array}
$$

$$
\begin{aligned}
\int u d v=u v & -\int v d u \\
\int(\ln x)^{2} x^{2} d x & =(\ln x)^{2}\left(\frac{1}{3} x^{3}\right)-\int \frac{1}{3} x^{3} \cdot 2 \ln x \cdot \frac{1}{x} d x \\
& =\frac{1}{3} x^{3}(\ln x)^{2}-\frac{2}{3} \int \ln x \cdot x^{2} d x \quad \begin{array}{l}
u=\ln x \quad d v=x^{2} d x \\
d u=\frac{1}{x} d x \quad v=\frac{1}{3} x^{3}
\end{array} \\
& =\frac{1}{3} x^{3}(\ln x)^{2}-\frac{2}{3}\left[\ln x \cdot \frac{1}{3} x^{3}-\int \frac{1}{3} x^{3} \cdot \frac{1}{x} d x\right] \\
& =\frac{1}{3} x^{3}(\ln x)^{2}-\frac{2}{3}\left[\frac{1}{3} x^{3} \ln x-\frac{1}{3} \int x^{2} d x\right] \\
& =\frac{1}{3} x^{3}(\ln x)^{2}-\frac{2}{3}\left[\frac{1}{3} x^{3} \ln x-\frac{1}{9} x^{3}+C\right. \\
& =\frac{1}{3} x^{3}(\ln x)^{2}-\frac{2}{9} x^{3} \ln x+\frac{2}{27} x^{3}+C
\end{aligned}
$$

Advanced Integration

10.1D - Integration by Parts

\#1) $\quad \frac{1}{24} x(4 x-2)^{6}-\frac{1}{672}(4 x-2)^{7}+c$
\#2) $\frac{1}{112}(4 x-2)^{7}+\frac{1}{48}(4 x-2)^{6}+c$
\#3) $u=x^{n} \quad d v=e^{x} d x$
\#4) $x^{2} e^{x}-2 x e^{x}+2 e^{x}+c$
\#5) $\quad R(x)=4 x e^{x / 4}-16 e^{\frac{x}{4}}+16$
\#6) $\quad \$ 105.7$ million
\#7) 2.85 milligrams
\#8) 105 customers
\#9) $\left(-\frac{3}{4}+2 \ln 2\right) u n^{2}$
\#10) $(x+1)^{2} e^{x}-2(x+1) e^{x}+2 e^{x}+c$
\#11) $\frac{1}{3} x^{3}(\ln x)^{2}-\frac{2}{9} x^{3} \ln x+\frac{2}{27} x^{3}+c$

