Advanced Integration

10.1 - Integration by Parts

Basic Formulas

1. $\int x^{n} d x=\frac{1}{n+1} x^{n+1}+C \quad(n \neq 1)$
2. $\int \frac{1}{x} d x=\ln |x|+C$
3. $\int e^{x} d x=e^{x}+C$
4. $\int e^{a x} d x=\frac{1}{a} e^{a x}+C$

Substitution Formulas

5. $\int u^{n} d u=\frac{1}{n+1} u^{n+1}+C \quad(n \neq-1)$
6. $\int \frac{1}{u} d u=\ln |u|+C$
7. $\int e^{u} d u=e^{u}+C$

Integration by Parts Formula:
8. $\int u d v=u v-\int v d u \quad u$ and \dot{v} are differentiable

Explanation for Formula:

For two differentiable functions $\mathrm{u}(\mathrm{x})$ and $\mathrm{v}(\mathrm{x})$, hereafter denoted u and v, the product rule is
$\left[\begin{array}{l}\frac{d v}{d x}=v^{\prime} \\ d v=v^{\prime} d x\end{array}\right]$

$$
\begin{aligned}
& (u v)^{\prime}=u^{\prime} v+u v^{\prime} \\
& u v=\int u^{\prime} v d x+\int u v^{\prime} d x
\end{aligned}
$$

$$
\begin{aligned}
& \frac{d y}{d x}=u^{\prime} \\
& d u=u^{\prime} d x
\end{aligned}
$$

Pro Tip:
Set u equal to expression that is easily differentiable.
Set $d v$ equal to expression that is easily integrated.

Further Suggestions for Choosing u and $d v$.

For Integrals of the form: Choose:

$$
\begin{array}{ll}
\int x^{n} e^{a x} d x & u=x^{n} \quad d v=e^{a x} d x \\
\int x^{n} \ln x d x & u=\ln x \quad d v=x^{n} d x \\
\int(x+a)(x+b)^{n} d x & u=x+a \quad d v=(x+b)^{n} d x
\end{array}
$$

Ex. A: Integration by Parts
\#1) Use integration by parts to find $\int x e^{x} d x$.

$$
\begin{aligned}
& \text { Derivative } \\
& \begin{array}{lll}
u=x & \text { Integrate } \\
\frac{d}{d u} & d v=e^{x} d x \\
d u & \text { (2) } & \int d v=\int e^{x} d x \\
d u=d x & v=e^{x}
\end{array}
\end{aligned}
$$

(3) $\int u d v=u v-\int v d u$ $\int x e^{x} d x=x e^{x}-\int e^{x} d x$
(4) $=x e^{x}-e^{x}+c$

> \#1: Set expressions equal to u and dv.
> \#2: Differentiate u to get $d u$ and integrate $d v$ to get v.
> \#3: Substitute
> expressions for u, $d u, v$, and $d v$ into the integration by parts formula.
> \#4: Finally
> integrate the $\int v d u$ portion of the formula.

Check the above answer by differentiating the answer. Do you get the original integral?

$$
\begin{aligned}
& \left(x e^{x}\right)^{\prime}-\left(e^{x}\right)^{\prime}+(C)^{\prime} \\
= & (x)^{\prime} e^{x}+x\left(e^{x}\right)^{\prime}-e^{x}+0 \\
= & 1 \cdot e^{x}+x e^{x}-e^{x} \\
= & x e^{x}
\end{aligned}
$$

Advanced Integration
10.1 - Integration by Parts
\#2) $\int x^{2} \ln (x) d x$

$$
\begin{array}{l|l}
u=\ln (x) & \begin{array}{l}
d v=x^{2} d x \\
\frac{d u}{d x}=\frac{1}{x} \\
d u=\frac{1}{x} d x
\end{array} \\
\int d u=\int x^{2} d x \\
v=\frac{1}{3} x^{3}
\end{array}
$$

$$
\begin{aligned}
\int u d v & =u v-\int v d u \\
\int\left(n(x) \cdot x^{2} d x\right. & =\ln (x) \cdot \frac{1}{3} x^{3} \cdot \int \frac{1}{3} x^{3}\left(\frac{1}{x} d x\right) \\
& =\frac{1}{3} x^{3} \ln (x)-\frac{1}{3} \int x^{2} d x \\
& =\frac{1}{3} x^{3} \ln (x)-\frac{1}{9} x^{3}+C
\end{aligned}
$$

\#3) $\int x^{4} \ln (x) d x$

$$
\begin{array}{rlrl}
u & =\ln (x) & d v & =x^{4} d x \\
\frac{d u}{d x} & =\frac{1}{x} & & \int d v=\int x^{4} d x \\
d u & =\frac{1}{x} d x & v & =\frac{1}{5} x^{5} \\
\operatorname{Sudv} & =u v-S v d u \\
\operatorname{Sn}(x) \cdot x^{4} d x & =\ln (x) \cdot \frac{1}{5} x^{5}-\int \frac{1}{5} x^{5}\left(\frac{1}{x}\right) d x \\
& =\frac{1}{5} x^{5} \ln (x)-\frac{1}{5} \int x^{4} d x \\
& =\frac{1}{5} x^{5} \ln (x)-\frac{1}{25} x^{5}+C
\end{array}
$$

Ex B: Which of the following integrals require integration by parts, and which can be found by a u substitution? (Do not solve the integrals.)
\#1) $\int x e^{x} d x$

$$
u=x \quad d v=e^{x} d x
$$

Integration by parts
\#2) $\int x e^{x^{2}} d x$

$$
\begin{aligned}
& u=x^{2} \\
& \frac{d u}{d x}=2 x \\
& d u=2 x d x \\
& \frac{d u}{2 x} d x
\end{aligned}
$$

Advanced Integration
10.1 - Integration by Parts

Ex C: Integration by parts \& " p " substitution
\#1) $\int(2 x-1)^{5}(x+3) d x$

$$
\begin{aligned}
& u=x+3 \quad d y=(2 x-1)^{5} d x \\
& \frac{d u}{d x}=1 \quad \int d v=\int(2 x-1)^{5} d x \\
& d u=d x \\
& \begin{array}{l}
v=\int p^{5} \\
v=\frac{1}{12} p^{6}
\end{array} \\
& V=\frac{1}{12}(2 x-1)^{6} \\
& \int u d v=u v-\int v d u \\
& \int(x+3)(2 x-1)^{5} d x=(x+3) \frac{1}{12}(2 x-1)^{6}-\int \frac{1}{12}(2 x-1)^{6} d x \\
& =\frac{1}{12}(x+3)(2 x-1)^{6}-\frac{1}{12} \int p^{6} \frac{1}{2} d p \\
& =\frac{1}{12}(x+3)(2 x-1)^{6}-\frac{1}{24}\left(\frac{1}{7}\right) p^{7}+c \\
& =\frac{1}{12}(x+3)(2 x-1)^{6}-\frac{1}{168}(2 x-1)^{7}+C
\end{aligned}
$$

\#2) $\int(x-2)(3 x+5)^{4} d x$

$$
\begin{aligned}
& \left.\begin{array}{l|l}
u=x-2 & d v=(3 x+5)^{4} d x \\
\frac{d u}{d x}=1 & S d v=\int(3 x+5)^{4} d x \\
d u=d x & v=\int p^{4} \frac{d p}{3} \\
v=\frac{1}{15} p^{5} \\
v=\frac{1}{15}(3 x+5)^{5}
\end{array}\right\} \\
& \int(x-2)(3 x+5)^{4} d x=(x-2) \frac{1}{15}(3 x+5)^{5}-\int \frac{1}{15}(3 x+5)^{5} d x \\
& =\frac{1}{15}(x-2)(3 x+5)^{5}-\frac{1}{15} \int p^{5} \frac{d p}{3} \\
& =\frac{1}{15}(x-2)(3 x+5)^{5}-\frac{1}{45} \cdot \frac{1}{6} p^{6}+C \\
& =\frac{1}{15}(x-2)(3 x+5)^{5}-\frac{1}{270}(3 x+5)^{6}+C
\end{aligned}
$$

Advanced Integration
10.1 - Integration by Parts

Present Value of a Continuous Stream of Income
If a business generates income continuously at the rate $\mathrm{C}(\mathrm{t})$ dollars per year, where t is the number of years from now, then $\mathrm{C}(\mathrm{t})$ is called a continuous stream of income. Present value is the amount now that will later yield the stated sum. To find the present value of a sum under continuous compounding we multiply by $\mathrm{e}^{-\mathrm{rt}}$, where r is the interest rate and t is the number of years.

Present Value of a Continuous Stream of Income

$$
\text { Present Value }=\int_{0}^{T} C(t) e^{-r t} d t
$$

$C(t)=$ rate in dollars per year
$t=$ number of years from now $T=$ years at continuous interest rate $r=$ interest rate (as a decimal)

Ex.B: Finding the Present Value of a continuous Stream of Income
President Business
\#1) President Business generates income at the rate of $2 t$ million Lego dollars per year, where t is the number of years from now. Find the present value of this continuous stream for the next 4 years at the continuous interest rate of 10%.

$$
\begin{aligned}
& P V=\int 2 t e^{-0.10 t} d t \\
& \int u d v=u v-\int v d u \\
& =\partial t\left(-10 e^{-.10 t}\right)-\int-10 e^{-.10 t} 2 d t \\
& =-20 t e^{-0.10 t}+20 \int e^{-.10 t} d t \\
& =-20 t e^{-0.10 t}-200 e^{-0.10 t}+C \\
& \int_{0}^{4} \partial t e^{-0.01 t} d t=\left[-20 t e^{-0.10 t}-\left.200 e^{-0.10 t}\right|_{0} ^{1}\right. \\
& =\left[-20(4) e^{-0.10(4)}-200 e^{-0.10(4)}\right]-\left[-20(0) e^{-0.10(0)}-200 e^{-0.10(0)}\right] \\
& =\left[-80 e^{-0.4}-200 e^{-0.4}\right]-\left[0 e^{0}-200 e^{0}\right] \\
& =-280 e^{-0.4}+200 \\
& \approx{ }^{5} / 2.3 \text { billion }
\end{aligned}
$$

The present salve of the stream of income over 4 years is approximately 812.3 million

