Advanced Integration

10.2 - Complex Integration Formulas

Basic Formulas

1. $\int x^{n} d x=\frac{1}{n+1} x^{n+1}+C \quad(n \neq 1)$
2. $\int \frac{1}{x} d x=\ln |x|+C$
3. $\int e^{x} d x=e^{x}+C$
4. $\int e^{a x} d x=\frac{1}{a} e^{a x}+C$

Substitution Formulas

5. $\int u^{n} d u=\frac{1}{n+1} u^{n+1}+C \quad(n \neq-1)$
6. $\int \frac{1}{u} d u=\ln |u|+C$
7. $\int e^{u} d u=e^{u}+C$

Integration by Parts Formula
8. $\int u d v=u v-\int v d u$

Complex Integration Formulas

Forms involving $\mathrm{az}+\mathrm{b}$
9. $\int \frac{\mathrm{z}}{\mathrm{az}+\mathrm{b}} \mathrm{dz}=\frac{\mathrm{z}}{\mathrm{a}}-\frac{\mathrm{b}}{\mathrm{a}^{2}} \ln |\mathrm{az}+\mathrm{b}|+\mathrm{C}$
10. $\int \frac{1}{(a z+b)(c z+d)} d z=\frac{1}{a d-b c} \ln \left|\frac{a z+b}{c z+d}\right|+C$
11. $\int \frac{\mathrm{z}}{(\mathrm{az}+\mathrm{b})(\mathrm{cz}+\mathrm{d})} \mathrm{dz}=\frac{1}{\mathrm{ad}-\mathrm{bc}}\left(\frac{\mathrm{d}}{\mathrm{c}} \ln |\mathrm{cz}+\mathrm{d}|-\frac{\mathrm{b}}{\mathrm{a}} \ln |\mathrm{az}+\mathrm{b}|\right)+\mathrm{C}$
12. $\int \frac{1}{\mathrm{z}^{2}(\mathrm{az}+\mathrm{b})} \mathrm{dz}=-\frac{1}{\mathrm{~b}}\left(\frac{1}{\mathrm{z}}+\frac{\mathrm{a}}{\mathrm{b}} \ln \left|\frac{\mathrm{z}}{\mathrm{az}+\mathrm{b}}\right|\right)+\mathrm{C}$

Forms involving $\sqrt{\mathrm{az}+\mathrm{b}}$
13. $\int \frac{\mathrm{z}}{\sqrt{\mathrm{az}+\mathrm{b}}} \mathrm{dz}=\frac{2 \mathrm{az}-4 \mathrm{~b}}{3 \mathrm{a}^{2}} \sqrt{\mathrm{az}+\mathrm{b}}+\mathrm{C}$
14. $\int \frac{1}{\mathrm{z} \sqrt{\mathrm{az}+\mathrm{b}}} \mathrm{dz}=\frac{1}{\sqrt{\mathrm{~b}}} \ln \left|\frac{\sqrt{\mathrm{az}+\mathrm{b}}-\sqrt{\mathrm{b}}}{\sqrt{\mathrm{az}+\mathrm{b}}+\sqrt{\mathrm{b}}}\right|+\mathrm{C} \quad(b>0)$

Forms involving $z^{2}-a^{2}$ and $a^{2}-z^{2}$:
15. $\int \frac{1}{z^{2}-a^{2}} d z=\frac{1}{2 a} \ln \left|\frac{z-a}{z+a}\right|+C$
16. $\int \frac{1}{a^{2}-z^{2}} d z=\frac{1}{2 a} \ln \left|\frac{a+z}{a-z}\right|+C$

Forms involving $\sqrt{\mathrm{z}^{2} \pm \mathrm{a}^{2}}$
17. $\int \sqrt{z^{2} \pm \mathrm{a}^{2}} \mathrm{dz}=\frac{\mathrm{z}}{2} \sqrt{\mathrm{z}^{2} \pm \mathrm{a}^{2}} \pm \frac{\mathrm{a}^{2}}{2} \ln \left|\mathrm{z}+\sqrt{\mathrm{z}^{2} \pm \mathrm{a}^{2}}\right|+\mathrm{C}$
18. $\int \frac{1}{\sqrt{\mathrm{z}^{2} \pm \mathrm{a}^{2}}} \mathrm{dz}=\ln \left|\mathrm{z}+\sqrt{\mathrm{z}^{2} \pm \mathrm{a}^{2}}\right|+\mathrm{C}$

Forms involving $\sqrt{\mathrm{a}^{2} \pm \mathrm{z}^{2}}$
19. $\int \frac{\sqrt{a^{2} \pm z^{2}}}{z} d z=\sqrt{a^{2} \pm z^{2}}-a \ln \left|\frac{a+\sqrt{a^{2} \pm z^{2}}}{z}\right|+C$
20. $\int \frac{1}{z \sqrt{a^{2} \pm z^{2}}} d z=-\frac{1}{a} \ln \left|\frac{a+\sqrt{a^{2} \pm z^{2}}}{z}\right|+C$

Reduction Formulas involving e^{az} and $\ln \mathrm{z}$
21. $\int \mathrm{z}^{\mathrm{n}} \mathrm{e}^{\mathrm{az}} \mathrm{dz}=\frac{1}{\mathrm{a}} \mathrm{z}^{\mathrm{n}} \mathrm{e}^{\mathrm{az}}-\frac{\mathrm{n}}{\mathrm{a}} \int \mathrm{z}^{\mathrm{n}-1} \mathrm{e}^{\mathrm{az}} d \mathrm{z}$
22. $\int(\ln \mathrm{z})^{\mathrm{n}} \mathrm{dz}=\mathrm{z}(\ln \mathrm{z})^{\mathrm{n}}-\mathrm{n} \int(\ln \mathrm{z})^{\mathrm{n}-1} \mathrm{dz}$
23. $\int \mathrm{z}^{\mathrm{n}} \ln \mathrm{zdz}=\frac{1}{\mathrm{n}+1} \mathrm{z}^{\mathrm{n}+1} \ln \mathrm{z}-\frac{1}{(\mathrm{n}+1)^{2}} \mathrm{z}^{\mathrm{n}+1}+\mathrm{C} \quad(\mathrm{n} \neq-1)$

Advanced Integration
 10.2 - Complex Integration Formulas

How To Choose a Formula

Your guess is as good as mine.

State the number of the complex integration formula you would use to find each integral. Also, state the values you would use for the substitution.
\#1) $\int \frac{x}{2 x+8} d x$
Formula $9: \int \frac{z}{a z+b} d z$

$z=x$	$a=2$
$d z=d x$	$b=8$

\#2) $\int \frac{1}{(-3 x+7)(2 x-5)} d x$
Formula 10: $\int \frac{1}{(a z+b)(c z+a)} d z$

$$
\begin{array}{cll}
z=x & a=-3 & c=2 \\
d z=d x & b=7 & d=-5
\end{array}
$$

$$
\text { \#3) } \int \frac{x}{\sqrt{x+1}} d x
$$

Formula 13: $\int \frac{z}{\sqrt{a z+b}} d z$

$$
\begin{array}{ll}
z=x & a=1 \\
d z=d x & b=1
\end{array}
$$

\#4) $\int \frac{\sqrt{3-x^{2}}}{x} d x$
Formula 19: $\int \frac{\sqrt{a^{2}-z^{2}}}{z} d z$

$$
\begin{array}{ll}
z^{2}=x^{2} & a^{2}=3 \\
z=x & a=\sqrt{3} \\
d z=d x &
\end{array}
$$

Integrate using one of the formulas $9-23$.
\#1) $\int \frac{1}{x^{2}-4} d x$

$$
\begin{aligned}
& \text { \#1) } \int \frac{1}{x^{2}-4} d x \\
& \text { Formula } 15: \int \frac{1}{z^{2}-a^{2}} d z=\frac{1}{\partial a} \ln \left|\frac{z-a}{z+a}\right|+C \\
& \begin{array}{ll}
z^{2}=x^{2} & a^{2}=4 \\
z=x & a=2 \\
d z=d x
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
\int \frac{1}{x^{2}-4} d x & =\frac{1}{2(2)} \ln \left|\frac{x-2}{x+2}\right|+C \\
& =\frac{1}{4} \ln \left|\frac{x-2}{x+2}\right|+C
\end{aligned}
$$

Note : The goal is to get the left side of the formula to look like the original integral.

Note:
a^{2} does not
require the last number to be a perfect square. For example,
$x^{2}-3$,
can be written as
$x^{2}-a^{2}$ with $=a=\sqrt{3}$

\#2) $\int \frac{x}{\sqrt{x^{4}+1}} d x$

$$
\begin{gathered}
\text { Formula 18: } \int \frac{1}{\sqrt{z^{2}+a^{2}}} d z=\ln \left|z+\sqrt{z^{3}+a^{2}}\right|+C \\
\qquad \begin{array}{ll}
z^{2}=x^{4} & a^{2}=1 \\
z=x^{3} & a=1 \\
d z=2 x d x
\end{array}
\end{gathered}
$$

$$
\begin{aligned}
& 2 \int \frac{1}{\sqrt{x-1}} d x= \\
& \int \frac{\sqrt{x^{2}}+1}{\sqrt{x^{x}+1}} d x=\frac{\sin }{\frac{1}{2}}\left|x^{2}+\sqrt{x^{2}+1}\right|+c
\end{aligned}
$$

