Limits \& Continuity
 Chapter 1 Review

Find the following limits without using a graphing calculator or making tables.
\#1) $\lim _{x \rightarrow-1} \frac{x^{2}}{2 x}$
\#2) $\lim _{h \rightarrow 0} \frac{x^{4} h-x h^{2}}{h}$

Answer each question concerning piecewise functions.
\#3) $f(x)=\left\{\begin{aligned}-x+4, & \text { if } x<4 \\ x-5, & \text { if } x \geq 4\end{aligned}\right.$
a. $\quad \lim _{x \rightarrow 4^{-}} f(x)=$
b. $\lim _{x \rightarrow 4^{+}} f(x)=$
c. $\quad \lim _{x \rightarrow 4} f(x)=$
\#4) For the following piecewise function:

$$
f(x)=\left\{\begin{array}{l}
\frac{1}{2} x+3, \text { if } x \leq 2 \\
-x+6, \text { if } x>2
\end{array}\right.
$$

a. Draw its graph

b. Find the limits as x approaches 2 from the left.
c. Find the limits as x approaches 2 from the right.
d. Is it continuous at $x=2$? If not, why?

Limits \& Continuity
 Chapter 1 Review

\#5) Find each limit. Assume that each limit that does exist is an integer. (There is no work to be shown)
\#6) Find the equation for the tangent line to the curve $f(x)=\frac{1}{2} x^{2}$ at $x=1$. Write your equation in slopeintercept form.
d. $\quad \lim _{x \rightarrow 5^{-}} f(x)=$
e. $\lim _{x \rightarrow 5^{+}} f(x)=$
f. $\quad \lim _{x \rightarrow 5} f(x)=$
g. $\quad \lim _{x \rightarrow 10^{-}} f(x)=$
h. $\lim _{x \rightarrow 10^{+}} f(x)=$
i. $\quad \lim _{x \rightarrow 10} f(x)=$

Limits \& Continuity Chapter 1 Review

\#7) Find the equation for the tangent line to the curve $f(x)=x^{2}-8 x+5$ at $x=2$. Write your equation in slope-intercept form.

Given the graph of a function, sketch in the graph of its derivative function.
\#8)

Limits \& Continuity
 Chapter 1 Review

\#10) Often times, problems will ask for the derivative without using the word "derivative". We have learned two interpretations of a derivative. What are these two interpretations?
\#11) $\lim _{x \rightarrow 5}\left(x^{2}+1\right)=26$ is read "the limit of $x^{2}+1$, as x approaches 5, is 26 ." Use sentences and graphs to illustrate the meaning of said statement.
\#12) Give 2 specific scenarios of when a limit would not exist and explain why. You may use graphs to illustrate your point.

Scenario \#1:

Scenario \#2:

