Limits \& Continuity
 Chapter 1 Review

Find the following limits without using a graphing calculator or making tables.
\#1) $\lim _{x \rightarrow-1} \frac{x^{2}}{2 x}=\frac{(-1)^{2}}{2(-1)}=\frac{1}{-2}$
\#2) $\lim _{h \rightarrow 0} \frac{x^{4} h-x h^{2}}{h}=\lim \frac{h\left(x^{4}-x h\right)}{h}$

$$
n \rightarrow 0
$$

$$
=\lim _{h \rightarrow 0}\left(x^{4}-x h\right)
$$

$$
r_{h \rightarrow 0} \frac{x^{4} h-x^{2}}{h}=x^{4}-x(0)=x^{4}
$$

Answer each question concerning piecewise functions.
\#3) $f(x)=\left\{\begin{aligned}-x+4, & \text { if } x<4 \\ x-5, & \text { if } x \geq 4\end{aligned}\right.$
a. $\lim _{x \rightarrow 4^{-}} f(x)=\lim _{x \rightarrow 4^{-}}(-x+4)$

$$
\begin{aligned}
& =-(4)+4 \\
& =0
\end{aligned}
$$

b. $\lim _{x \rightarrow 4^{+}} f(x)=\lim _{x \rightarrow 4^{+}}(x-5)$

c. $\lim _{x \rightarrow 4} f(x)=$ Rn?
\#4) For the following piecewise function:

$$
f(x)=\left\{\begin{array}{l}
\frac{1}{2} x+3, \text { if } x \leq 2 \\
-x+6, \text { if } x>2
\end{array}\right.
$$

a. Draw its graph

b. Find the limits as x approaches 2 from the left.

$$
\lim _{x \rightarrow 2^{-}} f(x)=4
$$

c. Find the limits as x approaches 2 from the right.

$$
\lim _{x \rightarrow 2^{+}} f(x)=4
$$

d. Is it continuous at $\mathrm{x}=2$? If not, why?
yes..

Limits \& Continuity
 Chapter 1 Review

\#5) Find each limit. Assume that each limit that does exist is an integer. (There is no work to be shown)

a. $\quad \lim _{x \rightarrow 0^{-}} f(x)=3$
b. $\quad \lim _{x \rightarrow 0^{+}} f(x)=3$
c. $\quad \lim _{x \rightarrow 0} f(x)=3$
d. $\lim _{x \rightarrow 5^{-}} f(x)=\underbrace{11}$
e. $\quad \lim _{x \rightarrow 5^{+}} f(x)=\xrightarrow{11}$
f. $\lim _{x \rightarrow 5} f(x)=11$
g. $\quad \lim _{x \rightarrow 10^{-}} f(x)=\infty$ one
h. $\lim _{x \rightarrow 10^{+}} f(x)=\infty, d n e$
i. $\quad \lim _{x \rightarrow 10} f(x)=\infty, d n e$
\#6) Find the equation for the tangent line to the curve $f(x)=\frac{1}{2} x^{2}$ at $x=1$. Write your equation in slopeintercept form.

(3) Slope (a) $x=1$
$f^{\prime}(1)=1$

Limits \& Continuity
 Chapter 1 Review

\#7) Find the equation for the tangent line to the curve $f(x)=x^{2}-8 x+5$ at $x=2$. Write your equation in slope-intercept form.

$$
\begin{aligned}
& \text { (1) Point } 2 x=2 \\
& \begin{aligned}
& f(2)=(2)^{2}-8(2)+5 \\
&=4-16+5 \\
&=-12+5 \\
& f(2)=-7 \\
&(2,-7)
\end{aligned}
\end{aligned}
$$

$$
\begin{aligned}
& \text { (2) } \text { Slope } \\
& \begin{aligned}
\frac{d y}{d x} & =\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h} \\
& =\lim _{h \rightarrow 0} \frac{\left[(x+h)^{2}-8(x+h)+5\right]-\left[x^{2}-8 x+5\right]}{h} \\
& =\lim _{h \rightarrow 0} \frac{x^{2}+2 h x+h^{2}-8 x-8 h+5-x^{2}+8 x-5}{h} \\
& =\lim _{h \rightarrow 0} \frac{2 h x+h^{2}-8 h}{h} \\
& =\lim _{h \rightarrow 0} \frac{h(2 x+h-8)}{h} \\
= & \lim _{h \rightarrow 0}(2 x+h-8) \\
= & 2 x+(0)-8 \\
\frac{d y}{d x} & =2 x-8
\end{aligned}
\end{aligned}
$$

$$
\begin{aligned}
& \text { 3) Slope } 8 x=2 \\
& \begin{aligned}
\frac{d y(2)}{d x} & =2(2)-8 \\
& =4-8 \\
\frac{d y}{d x} & =-4
\end{aligned}
\end{aligned}
$$

(4) Pant-Slore form

$$
\begin{aligned}
y-y_{1} & =m\left(x-x_{1}\right) \\
y-(-7) & =-4(x-(2)) \\
y+7 & =-4 x+8 \\
y & =-4 x+1
\end{aligned}
$$

Given the graph of a function, sketch in the graph of its derivative function.

Limits \& Continuity
 Chapter 1 Review

\#10) Often times, problems will ask for the derivative without using the word "derivative". We have learned two interpretations of a derivative. What are these two interpretations?

Derivative means the slope of a tangent line. Derivative means the instantaneous rate of change.
\#12) Give 2 specific scenarios of when a limit would not exist and explain why. You may use graphs to illustrate your point.

Scenario \#1:

The limit would not exist at $x=5$.
As $x \rightarrow 5^{-}$the limit is 4 .
As $x \rightarrow 5^{+}$the limit is 2 .

The two -sided limit does not exist because the left and right limits do not agree

Scenario \#2:

The limit does not exist \& $x=10$. As $x \rightarrow 10$ from the left or the right, the y-value approaches infinity.
For a limit to exist, it must approach a single n amber. (∞ is not a number)
(2) As \times approaches 5 from the right y approaches 26.

