Limits & Continuity
Chapter 1 Review II
OPTIONAL
Find the following limits without using a graphing
calculator or making tables.
(1)
$$\lim_{x \to 2} \frac{x^2 - x}{2x - 7}$$

(2) $\lim_{x \to 2} \frac{x^2 - x}{2x - 7}$
(3) $\lim_{x \to 1} \frac{x^2 - x}{x^2 - 3x^2}$
(4) $\lim_{x \to 1} \frac{x^2 - x}{x^2 + x}$
(5) $\lim_{x \to 1} \frac{x^2 - x}{x^2 + x}$
(6) $f(x) = \begin{cases} 2 - x, & \text{if } x < 4 \\ 2x - 5, & \text{if } x > 4 \end{cases}$
(7) $=$
(8) $\lim_{x \to 1} \frac{x^2 - x}{x^2 + x}$
(9) $f(x) = x$
(1) $\lim_{x \to 1} \frac{x^2 - x}{x^2 + x}$
(1) $\lim_{x \to 1} \frac{5x^4h - 9xh^2}{h}$
(2) $\lim_{x \to 1} \frac{5x^4h - 9xh^2}{h}$
(3) $\lim_{x \to 1} \frac{5x^4h - 9xh^2}{h}$
(4) $\lim_{x \to 1} \frac{5x^4h - 9xh^2}{h}$
(5) $\lim_{x \to 1} \frac{5x^4h - 9xh^2}{h}$
(5) $\lim_{x \to 1} \frac{5x^4h - 9xh^2}{h}$
(6) $\lim_{x \to 1} \frac{5x^4h - 9xh^2}{h}$
(7) $\lim_$

The Calculus Page 2 of 4

Limits & Continuity Chapter 1 Review II **OPTIONAL** Find $\frac{d}{dx}f(x)$ by using the definition of the derivative. #11) Find the equation for the tangent line to the curve $f(x) = 2x^2 - 5x + 1$ at x = 2. Write your equation in slope-intercept form. (Use a graphing #10) $f(x) = \frac{1}{2x}$ calculator to graph the curve with the tangent line to verify your answer.) #12) Find the equation for the tangent line to the curve $f(x) = 3x^2 - 8x + 7$ at x = 3. Write your equation in slope-intercept form. (Use a graphing calculator to graph the curve with the tangent line to verify your answer.)

