## Limits \& Continuity <br> Chapter 1 Review II <br> OPTIONAL

Find the following limits without using a graphing calculator or making tables.
\#1) $\lim _{x \rightarrow 7} \frac{x^{2}-x}{2 x-7}$
\#2) $\lim _{s \rightarrow 4}\left(s^{\frac{3}{2}}-3 s^{\frac{1}{2}}\right)$
\#3) $\lim _{x \rightarrow 0} \frac{x^{2}-x}{x^{2}+x}$
\#4) $\lim _{h \rightarrow 0} \frac{5 x^{4} h-9 x h^{2}}{h}$

Answer each question concerning piecewise functions.
\#5) $f(x)=\left\{\begin{aligned} 5-x, & \text { if } x<4 \\ 2 x-5, & \text { if } x \geq 4\end{aligned}\right.$
a. $\quad \lim _{x \rightarrow 4^{-}} f(x)=$
b. $\quad \lim _{x \rightarrow 4^{+}} f(x)=$
c. $\lim _{x \rightarrow 4} f(x)=$
\#6) $f(x)=\left\{\begin{aligned} 2-x, & \text { if } x<4 \\ 2 x-10, & \text { if } x \geq 4\end{aligned}\right.$
a. $\quad \lim _{x \rightarrow 4^{-}} f(x)=$
b. $\lim _{x \rightarrow 4^{+}} f(x)=$
c. $\lim _{x \rightarrow 4} f(x)=$

## Limits \& Continuity Chapter 1 Review II <br> OPTIONAL

\#7) For the following piecewise function:

$$
f(x)=\left\{\begin{array}{l}
5-x, \text { if } x \leq 3 \\
x-2, \text { if } x>3
\end{array}\right.
$$

a. Draw its graph

b. Find the limits as $x$ approaches 3 from the left.
c. Find the limits as $x$ approaches 3 from the right.
d. Is it continuous at $x=3$ ? If not, why?

Find $f^{\prime}(x)$ by using the definition of the derivative.
\#8) $f(x)=2 x^{2}-5 x+1$
\#9) $f(x)=-3 x+5$

## Limits \& Continuity <br> Chapter 1 Review II <br> OPTIONAL

Find $\frac{d}{d x} f(x)$ by using the definition of the derivative.
\#10) $f(x)=\frac{1}{2 x}$
\#11) Find the equation for the tangent line to the curve $f(x)=2 x^{2}-5 x+1$ at $x=2$. Write your equation in slope-intercept form. (Use a graphing calculator to graph the curve with the tangent line to verify your answer.)
\#12) Find the equation for the tangent line to the curve $f(x)=3 x^{2}-8 x+7$ at $x=3$. Write your equation in slope-intercept form. (Use a graphing calculator to graph the curve with the tangent line to verify your answer.)

## Limits \& Continuity <br> Chapter 1 Review II <br> OPTIONAL

Given the graph of a function, sketch in the graph of its derivative function.

\#14)

\#15) Often times, problems will ask for the derivative without using the word "derivative". We have learned two interpretations of a derivative. What are these two interpretations?
\#16) $\lim _{x \rightarrow 5}\left(x^{2}+1\right)=26$ is read as $x$ approaches 5 of $x^{2}+1$ is equal to 26 . Use sentences and graphs to illustrate the meaning of said statement.
\#17) Give 2 specific scenarios of when a limit would not exist and explain why. You may use graphs to illustrate your point.

Scenario \#1:

## Scenario \#2:

