Basic Derivative Rules

2.3A - Product Rule

A: Use the Product Rule and Newton's Notation to find the derivative of each product.
\#1) $f(x)=x^{5} \cdot x^{7}$,

$$
\text { \#1) } \begin{aligned}
f(x) & =x^{5} \cdot x^{\prime} \\
f^{\prime}(x) & =\left(x^{5}\right) \cdot x^{7}+x^{5}\left(x^{7}\right)^{\prime} \\
& =5 x^{4} \cdot x^{7}+x^{5}\left(7 x^{6}\right) \\
& =5 x^{\prime 1}+7 x^{11} \\
f^{\prime}(x) & =12 x^{11}
\end{aligned}
$$

\#2) $f(x)=x^{5}\left(x^{3}-1\right)$

$$
f^{\prime}(x)=\left(x^{5}\right)^{\prime}\left(x^{3}-1\right)+x^{5}\left(x^{3}-1\right)^{\prime}
$$

$$
=5 x^{4}\left(x^{3}-1\right)+x^{5}\left(3 x^{2}\right)
$$

$$
=5 x^{7}-5 x^{4}+3 x^{7}
$$

$$
f^{\prime}(x)=8 x^{7}-5 x^{4}
$$

$$
\text { \#3) } \begin{aligned}
f(x) & =x^{6}\left(x^{3}+2 x-1\right) \\
f^{\prime}(x) & =\left(x^{6}\right)^{\prime}\left(x^{3}+2 x-1\right)+x^{6}\left(x^{3}+2 x-1\right)^{\prime} \\
& =6 x^{5}\left(x^{3}+2 x-1\right)+x^{6}\left(3 x^{2}+2\right) \\
& =6 x^{8}+12 x^{6}-6 x^{5}+3 x^{8}+2 x^{6} \\
f^{\prime}(x) & =9 x^{8}+14 x^{6}-6 x^{5}
\end{aligned}
$$

\#4) $f(x)=x\left(5, x^{4}-10\right)$

$$
\begin{aligned}
f^{\prime}(x) & =(x)^{\prime}\left(5 x^{4}-10\right)+x\left(5 x^{4}-10\right)^{\prime} \\
& =(1)\left(5 x^{4}-10\right)+x\left(20 x^{3}\right) \\
& =5 x^{4}-10+20 x^{4} \\
f^{\prime}(x) & =25 x^{4}-10
\end{aligned}
$$

\#5) $\begin{aligned} & f(x)=\left(x^{2}+1\right)\left(x^{2}-1\right) \\ & f^{\prime}(x)=\left(x^{2}+1\right)^{\prime}\left(x^{2}-1\right)+\left(x^{2}+1\right)\left(x^{2}-1\right)^{\prime}\end{aligned}$

$$
=2 x\left(x^{2}-1\right)+\left(x^{2}+1\right)(2 x)
$$

$$
\begin{aligned}
& =2 x^{3}-2 \\
f^{\prime}(x) & =4 x^{3}
\end{aligned}
$$

\#6) $f(x)=\left(x^{5}-1\right)\left(x^{2}+1\right)$

$$
\begin{aligned}
f^{\prime}(x) & =\left(x^{5}-1\right)^{\prime}\left(x^{2}+1\right)+\left(x^{5}-1\right)\left(x^{2}+1\right)^{\prime} \\
& =5 x^{4}\left(x^{2}+1\right)+\left(x^{5}-1\right)(2 x) \\
& =5 x^{6}+5 x^{4}+2 x^{6}-2 x \\
f^{\prime}(x) & =7 x^{6}+5 x^{4}-2 x
\end{aligned}
$$

B: Use the Product Rule and Leibniz's Notation to find the derivative of each product.
\#7) $f(x)=\left(x^{2}+2 x\right)(7 x+4)$

$$
\begin{aligned}
\frac{d}{d x} f(x) & =\frac{d}{d x}\left(x^{2}+2 x\right) \cdot(7 x+4)+\left(x^{2}+2 x\right) \frac{d}{d x}(7 x+4) \\
& =(2 x+2)(7 x+4)+\left(x^{2}+2 x\right)(7) \\
& =14 x^{2}+14 x+8 x+8+7 x^{2}+14 x \\
\frac{d f}{d x} & =21 x^{2}+36 x+8
\end{aligned}
$$

\#8) $f(x)=x^{11}\left(x^{2}-5 x+11\right)$

$$
\begin{aligned}
\frac{d f}{d x} & =\frac{d x^{11}}{d x}\left(x^{2}-5 x+11\right)+x^{11} \cdot \frac{d\left(x^{2}-5 x+11\right)}{d x} \\
& =11 x^{10}\left(x^{2}-5 x+11\right)+x^{\prime \prime}(2 x-5) \\
& =11 x^{12}-55 x^{11}+131 x^{10}+2 x^{12}-5 x^{11} \\
\frac{d f}{d x} & =13 x^{12}-60 x^{11}+121 x^{10}
\end{aligned}
$$

\#9) $f(x)=(\sqrt{x}-1)(\sqrt{x}+1)$

$$
\begin{aligned}
\frac{d}{d x} f(x) & =\frac{d}{d x}\left(x^{\frac{1}{2}}-1\right)(\sqrt{x}+1)+(\sqrt{x}-1) \frac{d}{d x}\left(x^{\frac{1}{2}}+1\right) \\
& =\frac{1}{2} x^{-\frac{1}{2}}(\sqrt{x}+1)+(\sqrt{x}-1)\left(\frac{1}{2} x^{-\frac{1}{2}}\right) \\
& =\frac{\sqrt{x}+1}{\partial \sqrt{x}}+\frac{\sqrt{x}-1}{\partial \sqrt{x}} \\
& =\frac{\partial \sqrt{x}}{\partial \sqrt{x}} \\
\frac{d}{d x} f(x) & =1
\end{aligned}
$$

\#10) $f(x)=\left(x^{1 / 3}-x^{1 / 5}\right)\left(x^{1 / 3}+x^{1 / 5}\right)$
$\frac{d}{d x} f(x)=\frac{d}{d x}\left(x^{\frac{1}{3}}-x^{1 / 3}\right) \cdot\left(x^{1 / 3}+x^{1 / 5}\right)+\left(x^{\frac{1}{3}}-x^{1 / 5}\right) \frac{d}{d x}\left(x^{1 / 3}+x^{1 / 5}\right)$
$=\left(\frac{1}{3} x^{-2 / 3}-\frac{1}{5} x^{-\frac{1}{5}}\right) \cdot\left(x^{1 / 3}+x^{\frac{1}{5}}\right)+\left(x^{\frac{1}{3}}-x^{\frac{1}{5}}\right)\left(\frac{1}{3} x^{-2 / 3}+\frac{1}{5} x^{-4 / 5}\right)$
$=\frac{1}{3} x^{-\frac{1}{3}}+\frac{1}{3} x^{-\frac{1}{3}} \cdot x^{\frac{1}{5}}-\frac{1}{5} x^{-\frac{4}{5}} \cdot x^{\frac{1}{3}}-\frac{1}{5} x^{-7 / 5}+\frac{1}{3} x^{-\frac{1}{3}}+\frac{1}{5} x^{\frac{1}{3}} \cdot x^{-4 / 5}-\frac{1}{3} x^{\frac{1}{5}} \cdot x^{-2 / 3}-\frac{1}{5} x^{-3 / 5}$
$=\frac{2}{3} x^{-1 / 3}-\frac{2}{5} x^{-3 / 5}$

Basic Derivative Rules

2.3A - Product Rule

Use the product rule and Leibniz.
\#11) $f(x)=\left(x^{4}+x^{2}+9\right)\left(x^{3}-x\right)$

Flag Football

\#13) After playing flag football for x hours, a person's body temperature is $T(x)=x^{3}(2 x-5)+$ 98.6 degrees Fahrenheit (for $0 \leq x \leq 3$). Find the rate of change after 2 hours.

$$
\begin{aligned}
T(x) & =\text { of } \mid x=\text { hours } \mid T^{\prime}(x)={ }^{\circ} F / \text { hans } \\
T^{\prime}(x) & =\left(x^{3}\right)^{\prime}(2 x-5)+x^{3}(2 x-5)^{\prime} \\
& =3 x^{2}(2 x-5)+x^{3}(2) \\
& =6 x^{3}-15 x^{2}+2 x^{3} \\
T^{\prime}(x) & =8 x^{3}-15 x^{2} \\
T^{\prime}(2) & =8(2)^{3}-15(2)^{2} \\
& =8(8)-15(4) \\
& =64-60 \\
T^{\prime}(2) & =4{ }^{\circ} \mathrm{F} / \text { hour }
\end{aligned}
$$

After two hours of playing flag football, a person's body temperature is increasing by 4 degrees per hour.

Use the product rule and Leibniz.
\#12) $f(x)=(\sqrt{x}+7)\left(\sqrt{x}+x^{2}\right)$

iTunes Sales

\#14) After x weeks, weekly sales of a song on iTunes are expected to be $S(x)=3 x^{2}\left(10-x^{3}\right)$ thousand for the first 2 weeks. Find the rate of change of sales after 2 weeks.

$$
\begin{aligned}
& S^{\prime}(x)=\left(3 x^{2}\right)^{\prime}\left(10-x^{3}\right)+3 x^{2}\left(10-x^{3}\right) \\
& =6 x\left(10-x^{3}\right)+3 x^{2}\left(-3 x^{2}\right) \\
& =60 x-6 x^{4}-9 x^{4} \\
& S^{\prime}(x)=60 x-15 x^{4} \\
& S^{\prime}(0)=60(2)-15(2)^{4} \\
& =120-15(16) \\
& =120-240 \\
& S^{\prime}(2)=-120 \text { thousand selbs/ween }
\end{aligned}
$$

After 2 weeks on iTunes, the weekly sales of a song are decreasing by 120,000 songs per week.

