Basic Derivative Rules

2.3 - Product Rule

Product Rule

Newton's Notation

$$
(f \cdot g)^{\prime}=f^{\prime} \cdot g+f \cdot g^{\prime}
$$

Ex A: Use the Product Rule and Newton's Notation to find the derivative of each product.
\#1) $x^{4} \cdot x^{6}$

$$
\begin{aligned}
\left(x^{4} \cdot x^{6}\right)^{\prime} & =\left(x^{4}\right)^{\prime} x^{6}+x^{4} \cdot\left(x^{6}\right)^{\prime} \\
& =4 x^{3} \cdot x^{6}+x^{4} \cdot 6 x^{5} \\
& =4 x^{9}+6 x^{9} \\
\left(x^{4} \cdot x^{6}\right)^{\prime} & =10 x^{9}
\end{aligned}
$$

\#2) $y=\left(x^{3}-x^{2}+7\right)\left(x^{4}+3\right)$

$$
\begin{aligned}
y^{\prime} & =\left(x^{3}-x^{2}+7\right)^{\prime} \cdot\left(x^{4}+3\right)+\left(x^{3}-x^{2}+7\right) \cdot\left(x^{4}+3\right)^{\prime} \\
& =\left(3 x^{2}-2 x\right)\left(x^{4}+3\right)+\left(x^{3}-x^{2}+7\right)\left(4 x^{3}\right) \\
& =3 x^{6}+9 x^{2}-2 x^{5}-6 x+4 x^{6}-4 x^{5}+28 x^{3} \\
y^{\prime} & =7 x^{6}-6 x^{5}+28 x^{3}+9 x^{2}-6 x
\end{aligned}
$$

Product Rule

Leibniz's Notation

$$
\frac{d}{d x}(f \cdot g)=\left(\frac{d}{d x} f\right) \cdot g+f \cdot\left(\frac{d}{d x} g\right)
$$

Ex B: Use the Product Rule and Leibniz's Notation to find the derivative of each product.
\#1) $x^{4}\left(4 x^{7}-3 x^{2}+12\right)$

$$
\begin{aligned}
& \frac{d}{d x}\left[x^{4}\left(4 x^{7}-3 x^{2}+12\right)\right] \\
& \quad=\frac{d}{d x} x^{4} \cdot\left(4 x^{7}-3 x^{2}+12\right)+x^{4} \cdot \frac{d}{d x}\left(4 x^{7}-3 x^{2}+12\right) \\
& \quad=4 x^{3}\left(4 x^{7}-3 x^{2}+12\right)+x^{4}\left(28 x^{6} \cdot 6 x\right) \\
& =16 x^{10}-12 x^{5}+48 x^{3}+28 x^{10}-6 x^{5} \\
& =44 x^{10}-18 x^{5}+48 x^{3}
\end{aligned}
$$

\#2) $y=\frac{15 x+1}{x^{3}}$

$$
\begin{aligned}
\frac{d y}{d x} & =\frac{d}{d x}(15 x+1) \cdot x^{-3}+(15 x+1) \frac{d}{d x} x^{-3} \\
& =15 \cdot x^{-3}+(15 x+1)\left(-3 x^{-4}\right) \\
& =\frac{15}{x^{3}}+\frac{(15 x+1)(-3)}{x^{4}} \\
& =\frac{15 \cdot x}{x^{3} \cdot x}+\frac{-45 x-3}{x^{4}} \\
& =\frac{15 x-45 x-3}{x^{4}} \\
\frac{d y}{d x} & =\frac{-30 x-3}{x^{4}}
\end{aligned}
$$

Basic Derivative Rules

2.3 - Product Rule

Ex C: Answer the following word problems.
PS4 sales
\#1) After selling PS4s for t weeks, the total sales are $S(t)=t^{3}\left(16-t^{2}\right)$ thousand PS4s for the first 3 weeks of sales. Find the rate of change after week 2.

$$
\begin{aligned}
S^{\prime}(t) & =\left(t^{3}\right)^{\prime}\left(16-t^{2}\right)+t^{3}\left(16-t^{2}\right)^{\prime} \\
& =3 t^{2}\left(16-t^{2}\right)+t^{3}(-2 t) \\
& =48 t^{2}-3 t^{4}-2 t^{4} \\
S^{\prime}(t) & =-5 t^{4}+48 t^{2}
\end{aligned}
$$

$$
\begin{aligned}
S^{\prime}(2) & =-5(2)^{4}+48(2)^{2} \\
& =-5(16)+48(4) \\
& =-80+192 \\
S^{\prime}(0) & =112 \text { thousand PS4S/weex }
\end{aligned}
$$

After selling PS4s for 2 weeks, the total number of sales is increasing by 112,000 PS As per week.

Weeds

\#2) After pulling weeds for t days, the total number of weeds in a flower garden can be represented by $W(t)=\left(t^{2}+1\right)\left(t^{3}-1\right)$ weeds. Find the rate of change after 8 days.

$$
\begin{aligned}
& \begin{array}{|c|c|c|}
\omega(t)=\text { weeds } & t=\text { days } & \omega^{\prime}(t)=\text { weeds } \\
\text { day } \\
\hline
\end{array} \\
& w^{\prime}(t)=\left(t^{2}+1\right)^{\prime}\left(t^{3}-1\right)+\left(t^{2}+1\right)\left(t^{3}-1\right)^{\prime} \\
& =2 t\left(t^{3}-1\right)+\left(t^{2}+1\right)\left(3 t^{2}\right) \\
& =2 t^{4}-2 t+3 t^{4}+3 t^{2} \\
& \omega^{\prime}(t)=5 t^{4}+3 t^{2}-7 t \\
& \omega^{\prime}(8)=5(8)^{4}+3(8)^{2}-2(8) \\
& =5(4096)+3(64)-16 \\
& =20,480+192-16 \\
& w^{\prime}(8)=20.656
\end{aligned}
$$

After pulling weeds for 8 weeks, the number of weeds in the garden are STILL increasing by 20,656 weeds per week.

