Basic Derivative Rules
 2.4A - Quotient Rule

A: Find the derivative of each function using Newton's Notation.
\#1) $y=\frac{x^{5}-1}{x^{3}}=x^{2}-x^{-3}$

$y^{\prime}=\frac{2 x^{5}+3}{x^{4}}$
\#2) $y=\frac{x-1}{x+1}$

$$
\begin{aligned}
& y^{\prime}=\frac{(x-1)^{\prime}(x+1)-(x-1)(x+1)^{\prime}}{(x+1)^{2}} \\
& y^{\prime}=\frac{(1)(x+1)-(x-1)(1)}{(x+1)^{2}} \\
& y^{\prime}=\frac{x+1-x+1}{(x+1)^{2}} \\
& y^{\prime}=\frac{2}{(x+1)^{2}}
\end{aligned}
$$

\#3) $y=\frac{3 x^{2}+5}{x+7}$

$$
\begin{aligned}
\frac{x+7}{y^{\prime}} & =\frac{\left(3 x^{2}+5\right)^{\prime}(x+7)-\left(3 x^{2}+5\right)(x+7)^{\prime}}{(x+7)^{2}} \\
& =\frac{6 x(x+7)-\left(3 x^{2}+5\right)(1)}{(x+7)^{2}} \\
& =\frac{6 x^{2}+42 x-3 x^{2}-5}{(x+7)^{2}} \\
y^{\prime} & =\frac{3 x^{2}+4 x-5}{(x+7)^{2}}
\end{aligned}
$$

\#4) $y=\frac{x^{2}-1}{x^{2}+1}$

$$
\begin{aligned}
y^{\prime} & =\frac{\left(x^{2}-1\right)^{\prime}\left(x^{2}+1\right)-\left(x^{2}-1\right)\left(x^{2}+1\right)^{\prime}}{\left(x^{2}+1\right)^{2}} \\
& =\frac{2 x\left(x^{2}+1\right)-\left(x^{2}-1\right)(2 x)}{\left(x^{2}+1\right)^{2}} \\
& =\frac{2 x^{3}+2 x-2 x^{3}+2 x}{\left(x^{2}+1\right)^{2}} \\
y^{\prime} & =\frac{4 x}{\left(x^{2}+1\right)^{2}}
\end{aligned}
$$

\#5) $y=\frac{x^{4}-1}{x+1}$

$$
\begin{aligned}
y^{\prime} & =\frac{\left(x^{4}-1\right)^{\prime}(x+1)-\left(x^{4}-1\right)(x+1)^{\prime}}{(x+1)^{2}} \\
& =\frac{4 x^{3}(x+1)-\left(x^{4}-1\right)(1)}{(x+1)^{2}} \\
& =\frac{4 x^{4}+4 x^{3}-x^{4}+1}{(x+1)^{2}} \\
y^{\prime} & =\frac{3 x^{4}+4 x^{3}+1}{(x+1)^{7}}
\end{aligned}
$$

B: Find the derivative of each function using Leibniz's Notation.
\#6) $y=\frac{x^{2}+3 x-5}{x+1}$

$$
\frac{d y}{d x}=\frac{\frac{d}{d x}\left(x^{2}+3 x-5\right) \cdot(x+1)-\left(x^{2}+3 x-5\right) \frac{d}{d x}(x+1)}{(x+1)^{2}}
$$

$$
=\frac{(2 x+3)(x+1)-\left(x^{2}+3 x-5\right)(1)}{(x+1)^{2}}
$$

$=\frac{2 x^{2}+5 x+3-x^{2}-3 x+5}{(x+1)^{2}}$
$\begin{aligned} & =\frac{(x+1)}{d y} \\ \frac{d x}{} & =\frac{x^{2}+2 x+8}{(x+1)^{2}}\end{aligned}$
\#7) $y=\frac{x^{3}-2 x^{2}}{x-2}$

$$
y=\frac{x^{2}(x-2)}{x-2}
$$

$$
\begin{aligned}
& y=x^{2} \\
& \frac{d y}{d x}=2 x
\end{aligned}
$$

\#8) $y=\frac{x^{4}+2 x^{2}+1}{x^{2}+1}$

$$
\begin{aligned}
& y=\frac{\left(x^{2}+1\right)^{2}}{x^{2}+1} \\
& y=x^{2}+1 \\
& \frac{d y}{d x}=2 x
\end{aligned}
$$

\#9) $y=\frac{x^{2}-9}{x-3}$

$$
\begin{aligned}
& y=\frac{(x-3)(x+3)}{x-3} \\
& y=x+3 \\
& \frac{d y}{d x}=1
\end{aligned}
$$

Basic Derivative Rules

2.4A - Quotient Rule

Amp'd

\#10) The number of bottles of Amp Energy drink that college students will buy in a month at a price of p dollars per bottle (for $p>\$ 0.50$) is $B(p)=\frac{100}{p+6}$.
Find the rate of change of bottles purchased when the price is $\$ 2$ and interpret your answer.

$$
\begin{aligned}
B^{\prime}(p) & =\frac{(100)^{\prime}(p+6)-100(p+6)^{\prime}}{(p+6)^{2}} \\
& =\frac{0 \cdot(p+6)-100(1)}{(p+6)^{2}} \\
B^{\prime}(p) & =\frac{-100}{(p+6)^{2}} \\
B^{\prime}(2) & =\frac{-100}{((2)+6)^{2}} \\
& =\frac{-100}{(8)^{2}} \\
& =\frac{-100}{64} \\
B^{\prime}(2) & =-1.5625 \text { bo+105/\$pmbotle }
\end{aligned}
$$

When Amp'd is being sold at $\$ 2$ per bottle, the number of sales per student per month will decrease by 1.5625 bottles per $\$ 1$ increase in price.

When Amp'd is being sold at $\$ 2$ per bottle, if it's price is increased by $\$ 1$ it will result in a loss of sales of 1.5625 bottles per student per month.

EPA

\#11) According to the EPA, the mpg of subcompact cars is $m p g(v)=\frac{-15 v^{2}+1125 v}{v^{2}-100 v+3500}$ where v is the speed in miles per hour (for $35 \leq v \leq 65$).
a. Find $m p g^{\prime}(v)$. You don't need to simplify.
b. Find $m p g^{\prime}(45), m p g^{\prime}(55), m p g^{\prime}(65)$ using a calculator and interpret your answers.
c. What valuable lesson can be gained from the answers from part b ?
b
$. \mathrm{mpg}^{\prime}(45) \simeq-.03 \mathrm{mog} / \mathrm{moh}$
When traveling at 45 mph , you will lose .03 miles per gallon for each mph increase in speed.

$$
\mathrm{mPg}^{\prime}(55)=-.67 \mathrm{mog} / \mathrm{mph}
$$

When traveling at 55 mph , you will lose .67 miles per gallon for each mph increase in speed.

$$
\mathrm{mpg}^{\prime}(65)=-.87 \mathrm{mog} / \mathrm{mph}
$$

When traveling at 65 mph , you will lose .87 miles per gallon for each mph increase in speed.
C. Increasing your speed can greatly effect your mpg in a negative way.

