Basic Derivative Rules

2.4 - Quotient Rule

Quotient Rule

Newton's Notation

$$
\left(\frac{f}{g}\right)^{\prime}=\frac{f^{\prime} \cdot g-f \cdot g^{\prime}}{g^{2}}
$$

Ex A: Use the Quotient Rule and Newton's Notation.
\#1) $\left(\frac{x^{10}}{x^{4}}\right)^{\prime}=\frac{\left(x^{10}\right)^{\prime} \cdot x^{4}-x^{10}\left(x^{4}\right)^{\prime}}{\left(x^{4}\right)^{2}}$

$$
=\frac{10 x^{9} \cdot x^{4}-x^{10} \cdot 4 x^{3}}{x^{8}}
$$

$$
=\frac{10 x^{13}-4 x^{13}}{x^{8}}
$$

\#2) If $y=\frac{x^{3}}{x^{2}-4}$, then find y^{\prime}.

$$
\begin{aligned}
& y^{\prime}=\frac{\left(x^{3}\right)^{\prime}\left(x^{2}-4\right)-x^{3}\left(x^{2}-4\right)^{\prime}}{\left(x^{2}-4\right)^{2}} \\
& y^{\prime}=\frac{3 x^{2}\left(x^{2}-4\right)-x^{3}(2 x)}{\left(x^{2}-4\right)^{2}} \\
& y^{\prime}=\frac{3 x^{4}-12 x^{2}-2 x^{4}}{\left(x^{2}-4\right)^{2}} \\
& y^{\prime}=\frac{x^{4}-12 x^{2}}{\left(x^{2}-4\right)^{2}}
\end{aligned}
$$

Quotient Rule

Leibniz's Notation

$$
\frac{d}{d x}\left(\frac{f}{g}\right)=\frac{\frac{d}{d x}(f) \cdot g-f \cdot \frac{d}{d x}(g)}{(g)^{2}}
$$

Ex B: Use the Quotient Rule and Leibniz's Notation.
\#1) If $y=\left(\frac{x^{5}-2}{x^{3}-1}\right)$, then find $\frac{d y}{d x}$.

$$
\begin{aligned}
\frac{d y}{d x} & =\frac{\frac{d}{d x}\left(x^{5}-2\right) \cdot\left(x^{3}-1\right)-\left(x^{5}-2\right) \frac{d}{d x}\left(x^{3}-1\right)}{\left(x^{3}-1\right)^{2}} \\
& =\frac{5 x^{4}\left(x^{3}-1\right)-\left(x^{5}-2\right)\left(3 x^{2}\right)}{\left(x^{3}-1\right)^{2}} \\
& =\frac{5 x^{7}-5 x^{4}-3 x^{7}+6 x^{2}}{\left(x^{3}-1\right)^{2}} \\
\frac{d y}{d x} & =\frac{2 x^{7}-5 x^{4}+6 x^{2}}{\left(x^{3}-1\right)^{2}}
\end{aligned}
$$

\#2) $\frac{d}{d x}\left(\frac{x^{3}+x}{x^{3}-1}\right)=\frac{\frac{d}{d x}\left(x^{3}+x\right) \cdot\left(x^{3}-1\right)-\left(x^{3}+x\right) \frac{d}{d x}\left(x^{3}-1\right)}{\left(x^{3}-1\right)^{2}}$
$=\frac{\left(3 x^{2}+1\right)\left(x^{3}-1\right)-\left(x^{3}+x\right)\left(3 x^{2}\right)}{\left(x^{3}-1\right)^{2}}$
$=3 x^{5}+x^{3}-3 x^{2}-1-3 x^{5}-3 x^{3}$
$\left(x^{3}-1\right)^{2}$
$\frac{d y}{d x}=\frac{-2 x^{3}-3 x^{2}-1}{\left(x^{3}-1\right)^{2}}$

Basic Derivative Rules

2.4 - Quotient Rule

Ex C: Answer the following word problems.

Drinking Water

Gnadenhutten must purify its drinking water. If the cost of purifying a gallon of water to a purity of x percent is $C(x)=\frac{2}{100-x}$ dollars for $80<\mathrm{x}<100$, find

$$
\begin{gathered}
C(x)=\$ \text { pergallon } \mid x=\% \text { of purity } \\
C^{\prime}(x)=\$ \text { galon } / \% \text { a punly }
\end{gathered}
$$ the rate of change of the purification costs when the purity is 92% and 98% and interpret your answer.

$$
\begin{aligned}
C^{\prime}(x) & =\frac{(2)^{\prime}(100-x)-2 \cdot(100-x)^{\prime}}{(100-x)^{2}} \\
& =\frac{0(100-x)-2(-1)}{(100-x)^{2}} \\
C^{\prime}(x) & =\frac{2}{(100-x)^{2}}
\end{aligned}
$$

$$
\begin{aligned}
& C^{\prime}(a 2)=\frac{2}{(100-a 2)^{2}} \\
&=\frac{2}{(8)^{2}} \\
&=\frac{2}{64} \\
&=\frac{1}{32} \\
&=\$.03755^{\text {² gallon }} \\
& \% \text { purrly }
\end{aligned}
$$

$$
\begin{aligned}
C^{\prime}(98) & =\frac{2}{(100-98)^{2}} \\
& =\frac{2}{(2)^{2}} \\
& =\frac{2}{4} \\
& =\frac{\$ 50 \text { pergation }}{8} \text { purity }
\end{aligned}
$$

At 98% purity, it will cost a little over 50 cents per gallon of water to increase the purity by 1%.

