Basic Derivative Rules
 2.5 A - Differentiating $e^{f(x)}$ and $\ln f(x)$

A: Find the derivative of each function.
\#1) $\quad f(x)=\left(x^{2}+x\right) \ln (x)$

$$
\begin{aligned}
f^{\prime}(x) & =\left(x^{2}+x\right)^{\prime} \cdot \ln (x)+\left(x^{2}+x\right)[\ln (x)]^{\prime} \\
& =(2 x+1) \ln (x)+\left(x^{2}+x\right) \frac{1}{x} \\
f^{\prime}(x) & =(2 x+1) \ln (x)+x+1
\end{aligned}
$$

\#2) $\quad f(x)=\ln (\sqrt{x})$

$$
\begin{aligned}
f^{\prime}(x) & =\frac{(\sqrt{x})^{\prime}}{\sqrt{x}} \\
& =\frac{\frac{1}{2} x^{-\frac{1}{2}}}{\sqrt{x}} \\
& =\frac{\frac{1}{2 \sqrt{x}}}{\sqrt{x}} \\
f^{\prime}(x) & =\frac{1}{2 x}
\end{aligned}
$$

\#3) $\quad f(x)=\ln \left(x^{3}\right)$

$$
\begin{aligned}
f^{\prime}(x) & =\frac{\left(x^{3}\right)^{\prime}}{x^{3}} \\
& =\frac{3 x^{2}}{x^{3}} \\
f^{\prime}(x) & =\frac{3}{x}
\end{aligned}
$$

\#4) $\quad f(x)=x \ln (x)$

$$
\begin{aligned}
f^{\prime}(x) & =x^{\prime} \cdot \ln (x)+x \cdot[\ln (x)]^{\prime} \\
& =1 \cdot \ln (x)+x \cdot \frac{1}{x} \\
f^{\prime}(x) & =\ln (x)+D
\end{aligned}
$$

\#5) $\quad f(x)=\frac{\ln (x)}{x}$

$$
\begin{aligned}
& \frac{d f}{d x}=\frac{\frac{d}{d x} \ln (x) \cdot x-\ln (x) \cdot \frac{d}{d x} x}{x^{2}} \\
& \frac{d f}{d x}=\frac{\frac{1}{x} \cdot x-\ln (x) \cdot 1}{x^{2}} \\
& \frac{d f}{d x}=\frac{1-\ln (x)}{x^{2}}
\end{aligned}
$$

\#6) $\quad f(x)=e^{x}$

$$
\begin{aligned}
\frac{d f}{d x} & =x^{\prime} \cdot e^{x} \\
& =1 \cdot e^{x} \\
\frac{d f}{d x} & =e^{x}
\end{aligned}
$$

\#7) $\quad f(x)=e^{3 x^{2}+9 x-1}$

$$
\begin{aligned}
& \frac{d}{d x} f(x)=\left(3 x^{2}+9 x-1\right)^{\prime} e^{3 x^{2}+9 x-1} \\
& \frac{d f}{d x}=(6 x+9) e^{3 x^{2}+9 x-1}
\end{aligned}
$$

\#8) $\quad f(x)=e^{-x}$

$$
\begin{aligned}
f^{\prime}(x) & =(-x)^{\prime} \cdot e^{-x} \\
& =-1 \cdot e^{-x} \\
f^{\prime}(x) & =-e^{-x}
\end{aligned}
$$

Basic Derivative Rules
 2.5 A - Differentiating $e^{f(x)}$ and $\ln f(x)$

\#9) $\quad f(x)=e^{\ln (x)}$

\#10)

$$
f(x)=\ln \left(e^{x^{2}}\right)
$$

$$
\begin{aligned}
f^{\prime}(x) & =\frac{\left(e^{x^{2}}\right)^{\prime}}{e^{x^{2}}} \\
& =\frac{2 x \cdot e^{x^{2}}}{e^{x^{2}}} \\
f^{\prime}(x) & =2 x
\end{aligned}
$$

\#11)

$$
f(x)=x^{e}
$$

$$
\frac{d f}{d x}=e x^{e-1}
$$

\#12)

$$
f(x)=e x
$$

\#13) $\quad f(x)=\frac{x}{\ln (x)}$

$$
\begin{aligned}
f^{\prime}(x) & =\frac{x^{\prime} \cdot \ln (x)-x \cdot[\ln (x)]^{\prime}}{[\ln (x)]^{2}} \\
& =\frac{1 \cdot \ln (x)-x \cdot \frac{1}{x}}{\ln ^{2}(x)} \\
f^{\prime}(x) & =\frac{\ln (x)-1}{\ln ^{2}(x)}
\end{aligned}
$$

\#14) $\quad f(x)=e^{21}$

\#15) $f(x)=e^{3 x}-x \ln (x)+4 x^{2}+1$

$$
\begin{aligned}
f^{\prime}(x) & =3 e^{3 x}-\left[x^{\prime} \cdot \ln (x)+x \cdot[\ln (x)]^{\prime}\right]+8 x \\
& =3 e^{3 x}-\left[1 \cdot \ln (x)+x \cdot \frac{1}{x}\right]+8 x \\
f^{\prime}(x) & =3 e^{3 x}-\ln x-1+8 x
\end{aligned}
$$

\#16) $\quad f(x)=e \ln (x)$

$$
\begin{aligned}
& f^{\prime}(x)=e \cdot \frac{1}{x} \\
& f^{\prime}(x)=\frac{e}{x}
\end{aligned}
$$

Basic Derivative Rules
 2.5 A - Differentiating $e^{f(x)}$ and $\ln f(x)$

B: Evaluate each derivative
\#17) $\quad f(x)=x^{3} \ln (x)$, find $f^{\prime}(e)$

$$
\begin{aligned}
f^{\prime}(x) & =\left(x^{3}\right)^{\prime} \cdot \ln (x)+x^{3} \cdot[\ln (x)]^{\prime} \\
& =3 x^{2} \cdot \ln (x)+x^{3} \cdot \frac{1}{x} \\
f^{\prime}(x) & =3 x^{2} \ln (x)+x^{2} \\
f^{\prime}(e) & =3(e)^{2} \ln (e)+(e)^{2} \\
& =3 e^{2} \cdot 1+e^{2} \\
& =3 e^{2}+e^{2} \\
f^{\prime}(e) & =4 e^{2}
\end{aligned}
$$

\#19) $f(x)=x^{2} \ln (x)-x$, find $f^{\prime}(1)$

$$
\begin{aligned}
f^{\prime}(x) & \left.=\left(x^{2}\right)^{\prime} \ln (x)+x^{2} \cdot \ln (x)\right]^{\prime}-1 \\
& =2 x \cdot \ln (x)+x^{2} \cdot \frac{1}{x}-1 \\
f^{\prime}(x) & =2 x \ln (x)+x-1 \\
f^{\prime}(1) & =2(1) \ln (1)+(1)-1 \\
& =2 \cdot 0+0 \\
& =0+0 \\
f^{\prime}(1) & =0
\end{aligned}
$$

\#20) $\left.\quad \frac{\boldsymbol{d}}{\boldsymbol{d} x}\left(\boldsymbol{e}^{\sqrt{x}}\right)\right|_{x=1}=\left.(\sqrt{x})^{\prime} e^{\sqrt{x}}\right|_{x=1}$
$=\left.\frac{1}{2 \sqrt{x}} e^{\sqrt{x}}\right|_{x=1}$
$=\left.\frac{e^{\sqrt{x}}}{2 \sqrt{x}}\right|_{x=1}$
$=\frac{e^{\sqrt{1}}}{2 \sqrt{1}}$
$\left.\frac{d}{d x}\left(e^{\sqrt{x}}\right)\right|_{x=1}=\frac{e}{2}$

Basic Derivative Rules
 2.5 A - Differentiating $e^{f(x)}$ and $\ln f(x)$

Investment

\#21) A sum of $\$ 1000$ at 5% interest compounded continuously will grow to $V(t)=1000 e^{0.05 t}$ dollars in t years. Find the rate of growth after:
a. 0 years
b. 10 years

$$
\begin{aligned}
& V^{\prime}(t)=1000(0.05 t)^{\prime} \cdot e^{0.05 t} \\
& =1000(0.05) e^{0.05 t} \\
& \frac{V^{\prime}(t)=50 e^{0.05 t}}{\text { a. } V^{\prime}(0)=50 e^{0.05(0)} \text { b. } V^{\prime}(10)=50 e^{0.05(10)}} \\
& =50 e^{0} \quad=50 e^{0.5} \\
& =50(1) \quad=\$ 82.44 / \text { year } \\
& \begin{aligned}
& v^{\prime}(0)=50(1) \\
&=50 / \text { year }
\end{aligned}
\end{aligned}
$$

At the initial time of investment, the money is growing by $\$ 50$ per year.

In 10 years, the money is growing by $\$ 82.44$ per year.

Depreciation

\#22) A \$30,000 automobile depreciates so that its value after t years is $V(t)=30,000 e^{-0.35 t}$ dollars. Find the rate of change of its value ...
a. when it is brand spanking new
b. after 2 years

$$
\begin{aligned}
v^{\prime}(t) & =(-0.35 t)^{\prime} \cdot 30,000 e^{-0.35 t} \\
& =(-0.35) \cdot 30,000 e^{-0.35 t} \\
v^{\prime}(t) & =-10,500 e^{-0.35 t}
\end{aligned}
$$

a. $v^{\prime}(0)=-10.500 e^{-.35(0)}$ b. $V^{\prime}(2)=-10.500 e^{-.35(2)}$

$$
\begin{aligned}
& =-10.500 e^{0} & =-10,500 e^{-0.70} \\
V^{\prime}(0) & =-5,0,500 / \text { year } & V^{\prime}(2) \approx-55214.15 / \text { year }
\end{aligned}
$$

The moment you buy a car, it is depreciating by $\$ 10,500$ per year.

Two years after purchase, the car is depreciating by $\$ 5,214.15$ per year.

Candle Sticks

$\# 23)$ If $D(p)=1000 e^{-0.01 p}$ is the consumer demand for George's homemade candle sticks (which he advertises as "imported from the best Italian ears") and p is the selling price in dollars, find $D^{\prime}(100)$ and

$$
\begin{aligned}
& \text { interpret your answer. } \\
& \begin{aligned}
D(p) & =\text { candlesticks sold } \mid p=\text { price } \left\lvert\, D^{\prime}=\frac{\text { candlesticks }}{\text { dollar }}\right. \\
D^{\prime}(p) & =1000(-0.01 p)^{\prime} e^{-0.01 p} \\
& =1000(-0.01) e^{-0.01 p} \\
D^{\prime}(p) & =-10 e^{-0.01 p} \\
D^{\prime}(100) & =-10 e^{-.01(100)} \\
& =-10 e^{-1} \\
& =\frac{-10}{e} \\
D^{\prime}(100) & \approx-37 \text { candestrcks/doller }
\end{aligned}
\end{aligned}
$$

When the candlesticks cost $\$ 100$, increasing the price by $\$ 1$ will result in 37 fewer sales.

Forever Burning Matches ${ }^{\circledR}$

$\# 24)$ If $D(p)=4000 e^{-0.02 p}$ is the consumer demand for George's Forever Burning Matches ${ }^{\circledR}$ and p is the selling price in dollars, find $D^{\prime}(50)$ and interpret your answer.

$$
\begin{aligned}
D^{\prime}(p) & =4000(-0.02 p)^{\prime} e^{-0.02 p} \\
& =4000(-0.02) e^{-0.02 p} \\
D^{\prime}(p) & =-20 e^{-0.02 p} \\
D^{\prime}(50) & =-20 e^{-0.02(50)} \\
& =-20 e^{-1} \\
& =-\frac{20}{e} \\
D^{\prime}(50) & \approx-7 \text { matches/dollar }
\end{aligned}
$$

When the matches cost $\$ 50$, increasing the price by $\$ 1$ will result in 7 fewer sales.

