Basic Derivative Rules

2.5 - Differentiating $e^{f(x)}$ and $\ln f(x)$

Derivative of $\ln [f(x)]$

$$
\frac{d}{d x}[\ln (f)]=\frac{\frac{d}{d x}(f)}{f}
$$

Ex A: Find the derivative of each function.
\#1)

$$
f(x)=\ln \left(x^{2}-x+6\right)
$$

$$
f^{\prime}(x)=\frac{\left(x^{2}-x+6\right)^{\prime}}{x^{2}-x+6}
$$

$$
f^{\prime}(x)=\frac{2 x-1}{x^{2}-x+6}
$$

\#2)

$$
f(x)=\ln \left(x^{4}+9 x^{2}-8\right)
$$

$$
\begin{aligned}
& \frac{d f}{d x}=\frac{\frac{d}{d x}\left(x^{4}+9 x^{2}-8\right)}{x^{4}+9 x^{2}-8} \\
& \frac{d f}{d x}=\frac{4 x^{3}+18 x}{x^{4}+9 x^{2}-8}
\end{aligned}
$$

\#3) $\quad f(x)=\ln \left(x^{2}-1\right)^{5}$

$$
f^{\prime}(x)=\frac{\left[\left(x^{2}-1\right)^{5}\right]^{\prime}}{\left(x^{2}-1\right)^{5}} \rightarrow \text { AAA DO. }
$$

$$
\frac{\text { Instead }}{f(x)=\ln \left(x^{2}-1\right)^{5}}
$$

$$
f(x)=5 \ln \left(x^{2}-1\right)
$$

$$
f^{\prime}(x)=\int \frac{\left(x^{2}-1\right)^{\prime}}{x^{2}-1}
$$

$$
\begin{aligned}
& =5 \frac{2 x}{x^{2}-1} \\
f^{\prime}(x) & =\frac{10 x}{x^{2}-1}
\end{aligned}
$$

\#4)

$$
\begin{aligned}
& f(x)=x^{2} \ln (x) \\
& \frac{d f}{d x}=\frac{d}{d x} x^{2} \cdot \ln (x)+x^{2} \cdot \frac{d}{d x} \ln (x) \\
& \frac{d f}{d x}=2 x \cdot \ln (x)+x^{2} \cdot \frac{x^{\prime}}{x} \\
& \frac{d f}{d x}=2 x \cdot \ln (x)+x^{2} \cdot \frac{1}{x} \\
& \frac{d f}{d x}=2 x \ln (x)+x
\end{aligned}
$$

\#5)

$$
\begin{aligned}
& f(x)=\frac{\ln (x)}{f^{\prime}(x)} \\
&=\frac{[\ln (x)]^{\prime} \cdot x-\ln (x) \cdot x^{\prime}}{x^{2}} \\
&=\frac{\frac{x^{\prime}}{x} \cdot x-\ln (x) \cdot 1}{x^{2}} \\
&=\frac{\frac{1}{x} \cdot x-\ln (x)}{x^{2}} \\
& f^{\prime}(x)=\frac{1-\ln (x)}{x^{2}}
\end{aligned}
$$

Derivative of $\boldsymbol{e}^{\boldsymbol{f (x)}}$

$$
\frac{d}{d x}\left(e^{f}\right)=\frac{d}{d x}(f) \cdot e^{f}
$$

Ex B: Find each derivative.

$$
\begin{align*}
\frac{d}{d x} e^{x^{2}+x-1} & =\frac{d}{d x}\left(x^{2}+x-1\right) \cdot e^{x^{2}+x-1} \\
& =(2 x+1) e^{x^{2}+x-1}
\end{align*}
$$

\#2) $\frac{d}{d x} e^{\frac{x^{2}}{2}}=\frac{d}{d x}\left(\frac{1}{2} x^{2}\right) \cdot e^{\frac{x^{2}}{2}}$ $=x e^{\frac{x^{2}}{2}}$
\#3) $\left(e^{\frac{1}{4} x^{4}-1}\right)^{\prime}$

\#4)

$$
\left(\frac{e^{x}}{x}\right)^{\prime}=\frac{\left(e^{x}\right)^{\prime} \cdot x-e^{x} \cdot x^{\prime}}{x^{2}}
$$

$$
=\frac{x^{\prime} \cdot e^{x} \cdot x-e^{x}(1)}{x^{2}}
$$

\#5)

$$
\text { If } f(x)=x e^{x}, \text { find } f^{\prime}(1)
$$

$$
\begin{aligned}
f^{\prime}(x) & =x^{\prime} e^{x}+x\left(e^{x}\right)^{\prime} \\
& =1 \cdot e^{x}+x e^{x} \\
f^{\prime}(x) & =e^{x}+x e^{x}
\end{aligned}
$$

\#6)

$$
\text { If } \begin{aligned}
f(x) & =e^{x} \ln (x), \text { find } f^{\prime}(1) \\
f^{\prime}(x) & =\left(e^{x} J^{\prime} \ln (x)+e^{x} \cdot[\ln (x)]^{\prime}\right. \\
& =e^{x} \cdot \ln (x)+e^{x} \cdot \frac{1}{x} \\
f^{\prime}(x) & =e^{x} \ln (x)+\frac{e^{x}}{x}
\end{aligned}
$$

\#7)

$$
\begin{aligned}
{\left[\ln \left(x^{2}+e^{x}\right)\right]^{\prime} } & =\frac{\left(x^{2}+e^{x}\right)^{\prime}}{x^{2}+e^{x}} \\
& =\frac{2 x+e^{x}}{x^{2}+e^{x}}
\end{aligned}
$$

Basic Derivative Rules
 2.5 - Differentiating $e^{f(x)}$ and $\ln f(x)$

POLE VAULTING

\#1) After t weeks of practice a pole vaulter can vault $H(t)=14\left(1-e^{-0.10 t}\right)$ feet. Find the rate of change of the athlete's jumps after
a. 0 weeks (at the beginning of training)
b. $\quad 12$ weeks of training

$$
\begin{aligned}
H(t) & =14-14 e^{-0.10 t} \\
H^{\prime}(t) & =(-.10 t)^{\prime}\left(-14 e^{-0.10 t}\right) \\
& =(-.10)\left(-14 e^{-0.10 t}\right) \\
H^{\prime}(t) & =1.4 e^{-0.10 t}
\end{aligned}
$$

a. $H^{\prime}(0)=1.4 e^{-0.10(0)}$
$H^{\prime}(0)=1.4 e^{0}$
$H^{\prime}(0)=1.4(1)$
$H^{\prime}(0)=1.4 \mathrm{ft} /$ ween

After no practice, a pole vaulter can increase his jumping by 1.4 feet per week.

$$
\text { b. } \begin{aligned}
H^{\prime}(12) & =1.4 e^{-0.10(12)} \\
& =1.4 e^{-1.2} \\
H^{\prime}(12) & =.42 \mathrm{ft} / \text { ween }
\end{aligned}
$$

After 12 weeks of practice, a pole vaulter can increase his jumping by 0.42 feet per week.

