Derivative Applications

3.2 - Marginal Average Cost, Revenue, \& Profit

Average Cost, Average Revenue \&

Average Profit

These are often useful to calculate the average cost per unit, the average revenue per unit, and the average profit per unit, denoted by $\mathrm{AC}(\mathrm{x}), \operatorname{AR}(\mathrm{x})$, and $\mathrm{AP}(\mathrm{x})$.

$$
\begin{aligned}
& \text { Average Cost } \\
& A C(x)=\frac{C(x)}{x}
\end{aligned}
$$

Ex: If $\mathrm{AC}(45$ sneakers $)=\$ 30$.
When the 45th pair of sneakers has been produced, the average cost is $\$ 30$ per pair of sneakers.

$$
\begin{aligned}
& \text { Average Revenue } \\
& \qquad A R(x)=\frac{R(x)}{x}
\end{aligned}
$$

Ex: If $\mathrm{AR}(45$ sneakers $)=\$ 100$.
When the 45th pair of sneakers has been produced, the average revenue is $\$ 100$ per pair of sneakers.

Average Profit

$$
A P(x)=\frac{P(x)}{x}
$$

Ex: If $\mathrm{AP}(45$ sneakers $)=\$ 70$.
When the 45th pair of sneakers has been produced, the average profit is $\$ 70$ per pair of sneakers.

Marginal Average Cost

The marginal average cost reveals how much the average cost of producing an item is changing at any given moment.

$$
\operatorname{MAC}(x)=\left(\frac{C(x)}{x}\right)^{\prime}
$$

Ex: If MAC $(45$ sneakers $)=-\$ 3$.
When the 45th pair of sneakers has been produced, the average cost is decreasing by $\$ 3$ per pair of sneakers.

Marginal Average Revenue

The marginal average revenue reveals how much the average revenue from producing an item is changing at any given moment.

$$
\operatorname{MAR}(x)=\left(\frac{R(x)}{x}\right)^{\prime}
$$

Ex: If $\operatorname{MAR}(45$ sneakers $)=\$ 2$
When the 45 th pair of sneakers has been produced, the average revenue is increasing by $\$ 2$ per pair of sneakers.

Marginal Average Profit

The marginal average profit reveals how much the average profit from producing an item is changing at any given moment.

$$
M A P(x)=\left(\frac{P(x)}{x}\right)^{\prime}
$$

Ex: If $\operatorname{MAP}(45$ sneakers $)=\$ 5$
When the 45th pair of sneakers has been produced, the average profit is increasing by $\$ 5$ per pair of sneakers.

Derivative Applications

3.2 - Marginal Average Cost, Revenue, \& Profit

Shirt Company

\#1) It costs a shirt company $\$ 2$ to produce each shirt, and fixed costs are $\$ 10,000$.
a. Find $\mathrm{C}(100)$ and interpret your onswer.

$$
\begin{aligned}
C(x) & =2 x+\$ 10,000 \\
C(100) & =2(100)+10,000 \\
& =200+10,000 \\
C(100) & =\$ 10,200
\end{aligned}
$$

When 100 shirts have been made, the total cost is $\$ 10,200$.
b. Find $\mathrm{MC}(100)$ and interpret your answer.

$$
\begin{aligned}
& M C(x)=2 \\
& m C(100)=t^{t} 2 / \text { shix }
\end{aligned}
$$

When 100 shirts have been made, the total cost is increasing by $\$ 2$ per shirt.

When 100 shirts have been made, the cost to make the next shirt is $\$ 2$.
c. Find the average cost at $\mathrm{x}=100$ and interpret your answer.

$$
\begin{aligned}
& A C(x)=\frac{C(x)}{x} \\
& A C(x)=\frac{2 x+10,000}{x} \\
& \begin{aligned}
A C(100) & =\frac{2(100)+10,000}{100} \\
& =\frac{200+10,000}{100}
\end{aligned} \\
& =\frac{10200}{100} \\
& A C(100)=102
\end{aligned}
$$

When 100 shirts have been made, the average cost to make each shirt is $\$ 102$.
d. Find the marginal average cost at $\mathrm{x}=100$ and interpret your answer.

When 100 shirts have been produced, the average cost per shirt is decreasing by $\$ 1$ per shirt.

McSlapping

\#2) Mr McConnell sells head slaps which generates revenue shown by the function $R(x)=-x^{2}+$ $600 x+800$ dolla s where x is the number of slaps sold/given.
a. Find $R(45)$ and interpret your answer.

$$
\begin{aligned}
R(45) & =-(45)^{2}+600(45)+800 \\
& =-2025+27000+800 \\
R(45) & =525.775
\end{aligned}
$$

When 45 head slaps have been
sold, the botal revenue is $\$ 25,775$.
b. Find $\mathrm{MR}(45)$ and interpret your answer.

$$
\begin{aligned}
M R(x) & =-2 x+600 \\
M R(45) & =-2(45)+600 \\
& =-90+600 \\
M R(45) & =5510 / \text { slop }
\end{aligned}
$$

When 45 head slaps have been sold, the botal revenue is increasing by $\$ 510$ per slap.
When 45 head slaps have been sold, the revenue from the next slap is $\$ 510$.
c. Find the average revenue at $\mathrm{x}=45$ and interpret your answer.

$$
\begin{aligned}
A R(x) & =\frac{P(x)}{x}=\frac{-x^{2}+600 x+800}{x} \\
A R(x) & =-x+600+\frac{800}{x} \\
A R(45) & =-(45)+600+\frac{800}{(45)} \\
& =555+\frac{800}{45} \\
A R(45) & \approx 5573.78
\end{aligned}
$$

When 45 head slaps have been sold, the average revenue per slap is $\$ 572.78$.
d. Find the marginal average revenue at $\mathrm{x}=45$ and interpret your answer.
$\operatorname{AR}(x)=-x+600+800 x^{-1}$
$\operatorname{MAR}(x)=-1-800 x^{-2}$
$\operatorname{mAR}(x)=-1-\frac{800}{x^{2}}$

$\operatorname{mAR}(45)$	$=-1-\frac{800}{(45)^{2}}$
	$=-1-\frac{800}{2025}$
$\operatorname{mAR}(45)$	$=-5.40 /$ slap

When 45 slaps have been sold, the average revenue per slap is decreasing by $\$ 1.40$ per slap.

