Advanced Derivative Rules

4.2 - Derivatives \& Trigonometry

Derivatives of the Six Trigonometric Functions

$$
\begin{aligned}
& \frac{d}{d x} \sin (x)=\cos (x) \\
& \frac{d}{d x} \cos (x)=-\sin (x) \\
& \frac{d}{d x} \sec (x)=\sec (x) \tan (x) \\
& \frac{d}{d x} \csc (x)=-\csc (x) \cot (x) \\
& \frac{d}{d x} \tan (x)=\sec ^{2}(x) \\
& \frac{d}{d x} \cot (x)=-\csc ^{2}(x)
\end{aligned}
$$

Basic Identities

Reciprocal Identities: The following trig identities hold for all values of A except those for which any function is undefined.
$\sin (x)=\frac{1}{\csc (x)}$

$$
\csc (x)=\frac{1}{\sin (x)}
$$

$\cos (x)=\frac{1}{\sec (x)}$
$\sec (x)=\frac{1}{\cos (x)}$
$\tan (x)=\frac{1}{\cot (x)}$
$\cot (x)=\frac{1}{\tan (x)}$
Quotient Identities: The following trig identities hold for all values of A except those for which any function is undefined.
$\tan (x)=\frac{\sin (x)}{\cos (x)}$
$\cot (x)=\frac{\cos (x)}{\sin (x)}$
Pythagorean Identities: The following trig identities hold for all values of A except those for which any function is undefined.

$$
\begin{aligned}
& \sin ^{2}(x)+\cos ^{2}(x)=1 \\
& \tan ^{2}(x)+1=\sec ^{2}(x) \\
& 1+\cot ^{2}(x)=\csc ^{2}(x)
\end{aligned}
$$

Even \& Odd Trig Functions

Recall that an even function is said to be even if its symmetric with respect to the y-axis, $f(x)=f(-x)$.

$$
\cos (-x)=\cos (x)
$$

Recall that an odd function is said to be odd if it is symmetric with respect to the origin, $-\mathrm{f}(\mathrm{x})=\mathrm{f}(-\mathrm{x})$.

$$
\begin{aligned}
\sin (-x) & =-\sin (x) \\
\tan (-x) & =-\tan (x)
\end{aligned}
$$

Ex A: Differentiating using the Chain Rule.
\#1) $\frac{d}{d x}\left[\sin ^{4}(x)\right]=\frac{d}{d x}[\sin (x)]$

$$
=4[\sin (x)]^{3} \cdot \frac{d}{d x} \sin (x)
$$

$$
=4 \sin ^{3}(x) \cdot \cos (x) \cdot x^{\prime}
$$

$$
=4 \sin ^{3}(x) \cos (x) \cdot(1)
$$

$$
=4 \sin ^{3}(x) \cos (x)
$$

\#2) $\frac{d}{d x}\left[\sin \left(x^{4}\right)\right]$

$$
\begin{aligned}
& =\cos \left(x^{4}\right) \frac{d}{d x} x^{4} \\
& =\cos \left(x^{4}\right) \cdot x^{3} \\
& =x^{3} \cos \left(x^{4}\right)
\end{aligned}
$$

$$
\begin{align*}
& \frac{d}{d x}\left[\cos ^{4}(x)\right]=\frac{d}{d x}[\cos (x)]^{4} \\
& =4[\cos (x)]^{3} \cdot \frac{d}{d x} \cos (x) \\
& =4 \cos ^{3}(x)(-\sin (x)) \cdot x^{\prime} \\
& =-4 \cos ^{3}(x) \sin (x)(1) \\
& =-4 \cos ^{3}(x) \sin (x)
\end{align*}
$$

\#4) $\frac{d}{d x}\left[\cos \left(x^{4}\right)\right]$

$$
\begin{aligned}
& =\sin \left(x^{4}\right) \cdot \frac{d}{d x}\left(x^{4}\right) \\
& =\sin \left(x^{4}\right) \cdot 4 x^{3} \\
& =4 x^{3} \sin \left(x^{4}\right)
\end{aligned}
$$

Ex B: Differentiating using the Product Rule.
\#5) $\frac{d}{d x}\left(x^{4} \sin (x)\right)=\frac{d}{d x^{4}} x^{4} \cdot \sin (x)+x^{4} \frac{d}{d x} \sin (x)$

$$
=4 x^{3} \sin (x)+x^{4} \cos (x)
$$

Advanced Derivative Rules

4.2 - Derivatives \& Trigonometry
\#6) If $f(x)=\sin (x) \sec (x)$, find $f^{\prime}(x)$.

$$
\begin{aligned}
& =\sin (x) \cdot \frac{1}{\cos (x)} \\
& =\frac{\sin (x)}{\cos (x)}
\end{aligned}
$$

$$
f(x)=\tan (x)
$$

$$
f^{\prime}(x)=\sec ^{2}(x)
$$

Ex C: Differentiating using the Quotient Rule.

$$
\text { \#7) If } \begin{aligned}
y & =\frac{x^{2}}{\sin (x)} \text {, find } y^{\prime} . \\
y^{\prime} & =\frac{\left[x^{2}\right]^{\prime} \sin (x)-x^{2}[\sin (x)]^{\prime}}{[\sin (x)]^{2}} \\
y^{\prime} & =\frac{\partial x \cdot \sin (x)-x^{2} \cos (x)}{\sin ^{2}(x)}
\end{aligned}
$$

\#8) Use the identity $\cot (x)=\frac{\cos (x)}{\sin (x)}$ to prove
$\frac{d}{d x} \cot (x)=-\csc ^{2}(x)$
$\frac{d}{d x} \cot (x)=\frac{d}{d x} \frac{\cos (x)}{\sin (x)}$
$=\frac{\frac{d}{d x} \cos (x) \cdot \sin (x)+\cos (x) \cdot \frac{d}{d x}(\sin (x))}{[\sin (x)]^{2}}$
$=\frac{-\sin (x) \sin (x)-\cos (x) \cos (x)}{\sin ^{2}(x)}$
$=\frac{-\sin ^{2}(x)-\cos ^{2}(x)}{\sin ^{2}(x)}$
$=\frac{-1\left[\sin ^{2}(x)+\cos ^{2}(x)\right]}{\sin ^{2}(x)}$
$=\frac{-1 \cdot 1}{\sin ^{2}(x)}$
$\frac{d}{d x} \cot (x)=-\csc ^{2}(x)$
\#9) Differentiating using Regret, Sadness and a heavy dose of Eraser.

If $y=\frac{\tan (x)}{\sin (x)}$, find y^{\prime}.
$y=\frac{\frac{\sin (x t}{\cos (x)}}{\sin (x)} \cdot \frac{1}{\sin (x)}$
$y=\frac{1}{\cos (x)}$
$y=\sec (x)$
$y^{\prime}=\sec (x) \tan (x)$

