Advanced Derivative Rules

4.4 - Nondifferentiable Functions

Thus far we have learned to find derivatives by the definition of derivative, the Power Rule, the Sum \& Difference Rules, the Product Rule, the Quotient Rule, and the Chain Rule. However, there are functions that cannot be differentiated at certain values. These are called nondifferentiable functions. Knowing where a function is not differentiable is the focus of this section.

Summary of Nondifferentiable Functions

Therefore, if a function f satisfies any of the following conditions:

1. f has a corner point at $x=c$,
2. f has a vertical tangent at $x=c$,
3. f is discontinuous at $x=c$, then f will not be differentiable at c.

Advanced Derivative Rules 4.4 - Nondifferentiable Functions

Ex A: Find the x -values at which the derivative is undefined.

Ex B: Graph $f(x)=|x|$ and show it's not differentiable at $x=0$.

$$
f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}
$$

$$
f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{|x+h|-|x|}{h}
$$

$$
f^{\prime}(0)=\lim _{h \rightarrow 0} \frac{|(0)+h|-|0|}{h}
$$

$$
f^{\prime}(0)=\lim _{n \rightarrow 0} \frac{|n|}{n}
$$

$$
=\lim _{h \rightarrow 0^{-}} \frac{|h|}{h}
$$

$$
=\lim _{h \rightarrow 0^{+}} \frac{\ln \mid}{h}
$$

$$
=\lim _{h \rightarrow 0^{-}} \frac{|-h|}{-h}
$$

$$
=\lim _{h \rightarrow 0^{+}} \frac{|+h|}{+h}
$$

$$
=\lim _{h \rightarrow 0^{-}} \frac{+h}{-h}
$$

$$
=\lim _{h \rightarrow 0^{+}} \frac{+h}{+h}
$$

$$
=\lim _{h \rightarrow 0^{-}}-1
$$

$$
=\lim _{h \rightarrow 0^{+}}+1
$$

$$
=1
$$

$$
=-1
$$

