Graphing \& Basic Optimization

5.1 - Graphing Using Derivatives

We learned previously that the derivative of a function gives the \qquad ope of the graph.

Critical Value: an x -value that changes the nature of a curve. A critical value of function g is an x -value in the domain of g that satisfies one of the following:

$$
\begin{array}{ll}
g^{\prime}(x)=0 & g^{\prime \prime}(x)=0 \\
g^{\prime}(x) \text { is undefined } & g^{\prime \prime}(x) \text { is un }
\end{array}
$$

A critical value can produce a minimum point, a maximum point, an inflection point, or a vertical asymptote.
Critical Point: a point on a graph that changes the nature of the graph.
Relative Maximum Point: a point that is at least as high as the points relative to it on the curve on either side. Relative Minimum Point: a point that is at least as low as the points relative to it on the curve on either side. Inflection Point: a point on a graph that changes the concavity.

A minimum changes the graph from decreasing to increasing.

A maximum change the graph from increasing to decreasing.

An inflection point changes the concavity of the graph.

A vertical asymptote can change concavity and can change whether its increasing or decreasing.

Graphing via Derivatives

Step 1: Find CVs by finding when $f^{\prime}=0(Z O N)$ and $f^{\prime}=$ ind (ZOD)
Step 2: Find CPs by evaluating $f(C V)$
Step 3: Make sign diagram for f^{\prime}
Step 4: Find CVs by finding when $f^{\prime \prime}=0(\mathrm{ZON})$ and $f^{\prime \prime}=$ ind (ZOD)
Step 5: Find CPs by evaluating $f(C V)$
Step 6: Make sign diagram for $f^{\prime \prime}$
Step 7: Find the y-intercept

Slope and Concavity

Distinguish carefully between slope and concavity: Slope measures steepness; concavity measures curl.

$$
\begin{array}{ll}
f^{\prime}>0 \text { is increasing } & f^{\prime \prime}>0 \text { is concave up } \\
f^{\prime}<0 \text { is decreasing } & f^{\prime \prime}<0 \text { is concave down }
\end{array}
$$

Ex A: Draw part of a curve described below.
\#1) Increasing and concave up

\#2) Increasing and concave down
\#3) Decreasing and concave up

\#4) Decreasing and concave down

Graphing \& Basic Optimization

5.1 - Graphing Using Derivatives

Ex B: Guided Example (For day 1, do steps $1-3$ and 7. For day 2, do steps $4-6$.)
\#1) A company's annual profit after x years is $f(x)=x^{3}-12 x^{2}-60 x+15$ million dollars (for $x \geq 0$). Graph this function, show all relative extreme points and inflection points. Interpret the inflection point.

Step 1: Find CVs by finding when $f^{\prime}=0(Z O N)$ and $f^{\prime}=$ ind (ZOD)

Step 2: Find CPs by evaluating $f(C V)$

$$
\begin{gathered}
C P \\
f(-2)=79 \\
f(10)=-785 \\
C P:(-2,79),(10,-785)
\end{gathered}
$$

Step 3: Make sign diagram for f^{\prime}

$$
\begin{aligned}
& f^{\prime}(x)=3(x-10)(x+2) \\
& f^{\prime}(x)=(-1)(x-10)(x+2)
\end{aligned}
$$

$$
(+)(-)(-)=+\frac{1}{1}(+)(-)(+)=-\frac{1}{1}(+)(+)(t)=+
$$

Step 7: Find the y-intercept

$$
f(0)=15
$$

Step 4: Find CVs by finding when $f^{\prime \prime}=0(Z O N)$ and $f^{\prime \prime}=$ ind (ZOD)

CV

Step 5: Find CPs by evaluating $f(C V)$

$$
\begin{gathered}
C P \\
f(4)=-353 \\
C P:(4,-353)
\end{gathered}
$$

Step 6: Make sign diagram for $f^{\prime \prime}$

$$
f^{\prime \prime}(x)=6(x-4)
$$

concave

$$
\begin{aligned}
& 1 P \\
& (4,-353)
\end{aligned}
$$

concave down
UP

Graphing \& Basic Optimization
5.1 - Graphing Using Derivatives
(For day 1, do steps $1-3$ and 7. For day 2, do steps $4-6$.)
\#2) $f(x)=-x^{4}+4 x^{3}-5$

Step 1: C

$$
\begin{gathered}
f^{\prime}(x)=-4 x^{3}+12 x^{2} \\
0=-4 x^{2}(x-3) \\
2 \text { on } \\
\begin{array}{l}
0=-4 x^{2} \quad 0=x-3 \\
0=x^{2} \\
0=x \\
0=x \\
c v: x=0,3
\end{array} \\
\begin{array}{l}
\text { Sp } \\
\text { Step } \\
f(0)=-5 \\
f(3)=22 \\
(P \cdot(0,-5),(3,22)
\end{array}
\end{gathered}
$$

Step 3:

$$
\begin{aligned}
& 0=-4 x^{2}(x-3) \\
& 0=(-)(+)(x-3)
\end{aligned}
$$

$$
\begin{aligned}
& \rightarrow \underset{\text { Neither }}{M} \underset{(3, \partial 3)}{ } \text {) } \\
& \text { Step 7: } \\
& y \text {-int } \\
& f(0)=-5
\end{aligned}
$$

Step 4:
$C V$

$$
\begin{aligned}
f^{\prime \prime}(x) & =-12 x^{2}+24 x \\
0 & =-12 x(x-3)
\end{aligned}
$$

ION

$$
\begin{aligned}
& \left.\begin{array}{l}
0=-12 x \\
0=x
\end{array}\right\} \begin{array}{l}
0=x-2 \\
0=x \\
\operatorname{cv}: x=0,2
\end{array}
\end{aligned}
$$

Step 5: $\quad C P$

$$
\begin{aligned}
& f(0)=.5 \\
& f(2)=11 \\
& C P:(0,-5),(2,11)
\end{aligned}
$$

Step 6:

$$
\begin{aligned}
& f^{\prime}(x)=-12 x(x-2) \\
& f^{\prime}(x)=(-) x(x-2)
\end{aligned}
$$

$$
(-)(-)(-)=-1(-)(+)(-)=+, \quad(-)(+)(+)=-
$$

concave IP console IP concave down $(0,5) \cup P$ (2,11) down

Graphing \& Basic Optimization
5.1 - Graphing Using Derivatives
(For day 1, do steps $1-3$ and 7. For day 2 , do steps $4-6$.)
\#3) $f(x)=9 \sqrt[3]{(x-1)^{2}}=9(x-1)^{2 / 3}$
\#1) $c v$

$$
\begin{aligned}
& f^{\prime}(x)=6(x-1)^{-\frac{1}{3}} \\
& 0=\frac{6}{\sqrt[3]{x-1}} \\
& 2 O N \\
& 0 \pm 6 \quad \begin{array}{l}
0=\sqrt[3]{x-1} \\
0=x-1 \\
1=x \\
C v: x=1
\end{array} \\
& \begin{array}{l}
f(1)=0 \\
C P:(1,0)
\end{array}
\end{aligned}
$$

$$
0=\sqrt[3]{x-1}
$$

$$
0=x-1
$$

$$
\text { cu: } x=1
$$

\#3)

$$
\begin{gathered}
f^{\prime}(x)=\frac{6}{\sqrt[3]{x-1}} \\
f^{\prime}(x)=\frac{(+)}{\sqrt[3]{x-1}} \\
\frac{+}{-}=-\frac{+}{+}=+ \\
f^{\prime}<0: f^{\prime}>0 \\
\hline 0 \quad f^{\prime}(1)=\text { and } 2 \\
\text { M M N }
\end{gathered}
$$

甘7 \square

$$
y \text {-int }
$$

$$
f(0)=9
$$

\#6) $\quad f^{\prime \prime}(x)=\frac{-2}{\sqrt[3]{(x-1)^{4}}}$

$$
f^{\prime \prime}(x)=\frac{(-1}{(t)}
$$

$$
f^{\prime \prime}(x)=(-)
$$

$$
\begin{aligned}
& \text { CV } \\
& \text { +4) } f^{\prime \prime}(x)=-2(x-1)^{-4 / 3} \\
& 0=\frac{-2}{\sqrt[3]{(x-1)^{4}}} \\
& \text { Z.O.N. } \\
& 0 \neq-2 \\
& 0=\sqrt[3]{(x-1)^{4}} \\
& 0=x-1 \\
& x=1 \\
& C v: x=1 \\
& \text { \#5) } \\
& f(1)=0 \\
& C P:(1,0)
\end{aligned}
$$

Graphing \& Basic Optimization
5.1 - Graphing Using Derivatives
(For day 1, do steps $1-3$ and 7. For day 2, do steps $4-6$.)
\#4) $f(x)=\frac{2}{x^{2}-4 x}=\frac{2}{x(x-4)}=2\left(x^{2}-4 x\right)^{-1}$
RATIONAL FONCTOM!

If you have to graph a rational function, FIND holes and Asymptotes. You DONT have to do the second derivative sign diagram.

