We learned previously that the derivative of a function gives the <u>Stope</u> of the graph.

Critical Value: an x-value that changes the nature of a curve. A critical value of function g is an x-value in the domain of g that satisfies one of the following:

g'(x) = 0 g'(x) is undefined g''(x) = 0g''(x) is undefined

A critical value can produce a minimum point, a maximum point, an inflection point, or a vertical asymptote.

Critical Point: a point on a graph that changes the nature of the graph.

Relative Maximum Point: a point that is at least as *high* as the points relative to it on the curve on either side. *Relative Minimum Point:* a point that is at least as *low* as the points relative to it on the curve on either side. *Inflection Point:* a point on a graph that changes the concavity.

A minimum changes the graph from decreasing to increasing.

A maximum change the graph from increasing to decreasing.

An inflection point changes the concavity of the graph.

A vertical asymptote can change concavity and can change whether its increasing or decreasing.

Graphing via Derivatives

- Step 1: Find CVs by finding when f' = 0 (ZON) and f' = und (ZOD)
- Step 2: Find CPs by evaluating f(CV)
- Step 3: Make sign diagram for f'
- Step 4: Find CVs by finding when f'' = 0 (ZON) and f'' = und(ZOD)
- Step 5: Find CPs by evaluating f(CV)
- Step 6: Make sign diagram for f''
- Step 7: Find the y-intercept

Slope and Concavity

Distinguish carefully between slope and concavity: Slope measures steepness; concavity measures curl.

 $\begin{array}{ll} f' > 0 & \text{is increasing} \\ f' < 0 & \text{is decreasing} \end{array} \qquad \begin{array}{ll} f'' > 0 & \text{is concave up} \\ f'' < 0 & \text{is concave down} \end{array}$

Ex A: Draw part of a curve described below.

#1) Increasing and concave up

#2) Increasing and concave down

#4) Decreasing and concave down

Ex B: Guided Example (For day 1, do steps 1-3 and 7. For day 2, do steps 4-6.) #1) A company's annual profit after x years is $f(x) = x^3 - 12x^2 - 60x + 15$ million dollars (for $x \ge 0$). Graph this function, show all relative extreme points and inflection points. Interpret the inflection point.

Step 4: Find CVs by finding when
$$f'' = 0$$
 (ZON)
and $f'' = und$ (ZOD)
 $C \lor$
 $f''(x) = 6x - 24$
 $O = 6x - 24$
 $O = 6(x - 4)$
 ZoN
 $O \neq 6(x - 4)$
 ZoN
Step 5: Find CPs by evaluating $f(CV)$

$$CP$$

 $f(4) = -353$
 $CP: (4, -353)$

Step 6: Make sign diagram for f''

(For day 1, do steps 1 - 3 and 7. For day 2, do steps 4 - 6.) #2) $f(x) = -x^4 + 4x^3 - 5$

Step 1:
$$CV$$

 $f'(x) = -4x^3 + i\partial x^2$
 $O = -4x^2(x - 3)$
 $Z = -4x^2(x - 3)$
 $O = -4x^2$ $O = x - 3$
 $O = -5x^2$ O

Step 3:

$$O = -4x^{2}(x - 3)$$

$$o = (-)(+)(x \cdot 3)$$

(-)(+)(-)=+ F'>0	(+)(+)(- ۲'>)=+ 1 ⁽	-=(+)(+)(- +)(-) 2 '< O	
-1 -1	(•)=0	f '(3)	:0 4 7 \	~
7 Ne	;ther	м Ах (З,=	(cc)	

Step 7:

$$\frac{y-int}{f(o)=-5}$$

Step 4:

$$f''(x) = -1 \Im x^{2} + \Im yx$$

 $\Im = -12x(x - \Im)$
 $2 \Im x$
 $\Im = 22x$
 $2 \Im x$
 $\Im = 22x$
 $2 \Im x$
 2

The Calculus Page 4 of 6

(For day 1, do steps 1-3 and 7. For day 2, do steps 4-6.) #3) $f(x) = 9\sqrt[3]{(x-1)^2} = 9(x-1)^{3/3}$

$$\begin{array}{c}
\pm 1) & CV \\
f'(x) = 6 (x - 1)^{-1} \\
0 = \frac{6}{3 x - 1} \\
\hline
20N & 20D \\
0 = 3 x - 1 \\
0 = x - 1 \\
1 = x \\
C \\
U = x = 1
\end{array}$$

The Calculus Page **5** of **6**

(For day 1, do steps 1 - 3 and 7. For day 2, do steps 4 - 6.) #4) $f(x) = \frac{2}{x^2 - 4x} = \frac{2}{x(x - 4)} = 2(x^2 - 4x)^{-1}$ **PATIONAL** FOR COOK!

If you have to graph a rational function, FIND holes and Asymptotes. You DONT have to do the second derivative sign diagram.

#3 $f'(x) = \frac{-4(x-2)}{(x^2-4x)^2}$ $f'(x) = \frac{(-)(x-3)}{+}$ (-)(-)=+ (-)(-)=+ (-)(+)=- (NA (2,-2) JVA #7) <u>Y-int</u> [f(0)=und 6.1 √A he Calculus x=D √A X=4 Page 6 of 6