Graphing \& Basic Optimization
 5.2 - Optimization

Optimization: to find the maximum or minimum value a function
Absolute maximum value: the largest value of the function on its domain. (highest point on the graph) Absolute minimum value: the smallest value of the function on its domain. (lowest point on the graph)

Closed Interval

In a closed interval of a continuous function, the absolute maximum and minimum are guaranteed to exist.

To optimize a continuous function f on [a, b]:

1. Find all critical values of f in $[\mathrm{a}, \mathrm{b}]$
2. Identify the end values
3. Evaluate $f(C V)$ and $f(E V)$

The largest and smallest y-values found in step 3 will be the absolute maximum and minimum values of f on [a, b].

Open Interval

In an open interval of a function, both absolute extreme values may exist, or one or both may fail to exist.

Second-Derivative Test

Determining whether a twice-differentiable function has a relative maximum or minimum at a critical value can be determined by concavity.

Second-Derivative Test for Relative Extremes

If $x=c$ is a critical value of f at which $f^{\prime \prime}$ is defined, then
$f^{\prime \prime}(c)>0$ means that f has a relative minimum at $x=c$.
$f^{\prime \prime}(c)<0$ means that f has a relative maximum at $x=c$.
$f^{\prime \prime}(c)=0$ is inconclusive. Second-Derivative Test failed.

To use the second-derivative test, we first find all the critical values, substituting each into the second derivative and determining the sign result. A positive result means a minimum at the critical value, and a negative result means a maximum. (If the second derivative is zero, then the test is inconclusive, and you should use the first-derivative test or make a sign diagram for f '.)

If there is only one critical point, then the SecondDerivative Test can be used to find the Absolute Extreme Point.

Graphing \& Basic Optimization
 5.2 - Optimization

Ex A: Optimizing on a Closed Interval
Find the absolute extreme values of $f(x)=x^{3}-9 x^{2}+15 x$ on $[0,4]$ and then graph.

Pro Tips
If the function is continuous and the interval is closed, then both extreme values exist.

The endpoints, known as EP, are the beginning and end of the domain interval.
\#1) Find CVs by solving $f^{\prime}=0$. Throw out any critical values not in the domain.
\#2) Identify the EV (end values).
\#3) Find the CP and EP by
evaluating $f(C V)$ and $f(E V)$.
\#4) Identify the Absolute Minimum and Absolute Maximum on the interval.

Graphing \& Basic Optimization
 5.2 - Optimization

Ex B: Optimizing on an Open Interval
The value of a timber forest after t years is $V(t)=48 \sqrt{t}-6 t$ thousand dollars (for $\mathrm{t}>$ 0). Find when its value is maximized.

Pro Tips
\#1) Find CV by solving $f^{\prime}=0$.
\#2) Since there is only one CP, we can use the second-derivative test. To do so, find $f^{\prime \prime}(C V)$.

If $f^{\prime \prime}(C V)>0$, the we have an absolute min

If $f^{\prime \prime}(C V)<0$, then we have an absolute max.
\#3) Find the CP by evaluating $f(C V)$.
(Steps \#2 and \#3 are interchangeable)

Graphing \& Basic Optimization
 5.2 - Optimization

Ex C: Maximizing the Area of an Enclosure

A man lives in a white van down by the river. While spelunking he finds 1000 feet of pristine fence. He decides to build a rectangular enclose along the river to mark his territory. If the side along the river needs no fence, find the dimensions that make his territory as large as possible. Also find the maximum area.

Pro Tips
\#1) Draw a picture and define any variables you may use.
\#2) Based on picture, write equations for area and perimeter.
\#3) Use the perimeter and area equations to write the Area function in one variable.
\#4) Find the maximum of the Area function. (Solvef ${ }^{\prime}=0$. Then determine if max or min by second-derivative test.
\#5) Substitute the answer from \#4 into the perimeter equation to find the other dimension.
\#6) Use the dimensions in the area equation to find the maximum area.

Graphing \& Basic Optimization
 5.2 - Optimization

Ex D: Maximizing the Volume of a Box
An open-top box is to be made from a square sheet of metal 12 inches on each side by cutting a square from each corner and folding up the sides, as in the diagram below. Find the volume of the largest box that can be made.

Square Sheet

Corners Removed

Sides folded up

Pro Tips
\#1) Draw a picture and define any variables you may use.
\#2) Based on picture, write an equation for volume.
\#3) Find the max of the Volume function. (Solve $f^{\prime}=0$. Then determine if max or min by second-derivative test.
\#4) Find Volume by evaluating F(CV).

Graphing \& Basic Optimization
 5.2 - Optimization

