## Graphing \& Basic Optimization

## Review Chapter 5

Graph the following function by hand by making a first derivative sign diagram and then a second derivative sign diagram.
\#1) $f(x)=x^{2}\left(x^{2}-4\right)$
$f(x)=x^{4}-4 x^{2}$

$f^{\prime}(x)=4 x\left(x^{2}-2\right)$
$(+)(-)(t)=-1(+1)(-)(-)=+1(+)(+)(-)=-1(+)(+)(-t)=+$ $\xrightarrow[{f^{3}<f^{\prime}(-\sqrt{2})=0^{-1} \quad f^{\prime}(0)=0 \quad f^{\prime}(\sqrt{2})=0^{3}}]{f^{\prime}}$


$$
\begin{aligned}
& y-\ln + \\
& f(0)=0
\end{aligned}
$$

$$
f^{\prime \prime}(x)=4\left(3 x^{2}-2\right)
$$



The Calculus
Page 1 of 8

Graphing \& Basic Optimization
Review Chapter 5

Graph the following function by hand by making a first derivative sign diagram and then a second derivative sign diagram.
\#2) $f(x)=\frac{10 x^{2}}{x^{2}-9}$
Rational?

$$
f(x)=\frac{10 x^{2}}{(x-3)(x+3)}
$$

No zeros.

$$
\begin{array}{l|l}
\begin{array}{l}
V A \\
(x-3)(x+3)=0 \\
x-3=0 \\
x=3
\end{array} & \begin{array}{l}
x+3=0 \\
x=-3
\end{array} \\
\hline \begin{array}{l}
n ? d \\
2=2, \text { so } y=10
\end{array} \\
& \text { NO SA }
\end{array}
$$

$$
\begin{aligned}
f^{\prime}(x) & =\frac{\left(10 x^{2}\right)^{\prime}\left(x^{2}-9\right)-10 x^{2}\left(x^{2}-9\right)^{\prime}}{\left(x^{2}-9\right)^{2}} \\
\theta & =\frac{20 x\left(x^{2}-9\right)-10 x^{2}(2 x)}{\left(x^{2}-9\right)^{2}} \\
\theta & =\frac{20 x^{3}-180 x-20 x^{3}}{\left(x^{2}-9\right)^{2}} \\
\dot{\theta} & =\frac{-180 x}{\left(x^{2}-9\right)^{2}}
\end{aligned}
$$

$$
\begin{gathered}
y-i n t \\
f(0)=0
\end{gathered}
$$

$$
\begin{aligned}
& z O D \\
& 0=\left(x^{2}-9\right)^{2} \\
& 0=x^{2}-9 \\
& 9=x^{2} \\
& \pm 3=x \\
& \text { Cu }: x=-3.3
\end{aligned}
$$



$$
\begin{aligned}
& f^{\prime}(x)=\frac{-180 x}{\left(x^{2}-9\right)^{2}} \\
& \frac{(-)(-)}{T}=+\frac{1}{1} \frac{(-)(-)}{t}=+\frac{1(-)(t)}{+}=-{ }_{1}^{1} \frac{(-)(t)}{+}=-
\end{aligned}
$$

$$
\begin{aligned}
& \left.\rightarrow 1 \rightarrow \frac{M A x}{1} 10.0\right)>1 \begin{array}{l}
1 \\
1 \\
1 \\
1
\end{array}
\end{aligned}
$$



The Calculus Page 2 of $\mathbf{8}$

Graphing \& Basic Optimization
Review Chapter 5

Graph the following function by hand by making a first derivative sign diagram and then a second derivative sign diagram.
\#3) $f(x)=x^{3}+3 x^{2}+3 x+6$

$$
\begin{aligned}
& f^{\prime}(x)=3 x^{2}+6 x+3 \\
& 0=3\left(x^{2}+2 x+1\right) \\
& 0=3(x+1)^{2} \\
& \text { Ion } \\
& (x+1)^{2}=0 \\
& x+1=0 \\
& x=-1 \\
& \text { cu: } x=-1
\end{aligned}
$$

$$
\begin{aligned}
& C P \\
& f(-1)=5 \\
& (-1,5)
\end{aligned}
$$

$$
f^{\prime}(x)=3(x+1)^{2}
$$



$$
f
$$

$$
\begin{aligned}
& f^{\prime \prime}(x)=6 x+6 \\
& 0=6(x+1) \\
& \text { ZN } \\
& x+1=0 \\
& x=-1 \\
& \text { Er: } x=-1 \\
& \begin{array}{c}
C P \\
f(-1)=5 \\
f^{\prime \prime}(x)=6(x+1)
\end{array} \\
& (t)(-)=-1(t)(t)=t \\
& \xrightarrow{C(D) \quad f^{\prime \prime}<0, \quad f^{\prime \prime}>0}(-1)=0 \rightarrow c(0)
\end{aligned}
$$

## Graphing \& Basic Optimization <br> Review Chapter 5

Graph the following function by hand by making a first derivative sign diagram and then a second derivative sign diagram.
\#4) $f(x)=x^{3}(x-4)$

$$
f(x)=x^{4}-4 x^{3}
$$



$$
f^{\prime}(x)=4 x^{2}(x-3)
$$

$$
f^{\prime \prime}(x)=12 x(x-2)
$$



The Calculus

## Review Chapter 5

Find the absolute extreme points of each function on the given interval.
\#5) $f(x)=x^{3}-6 x^{2}+22$ on $[-2,2]$

$$
\begin{aligned}
& f^{\prime}(x)=3 x^{2}-12 x \\
& 0=3 x^{2}-12 x \\
& 0=3 x(x-4) \\
& 0=3 x\} \begin{array}{l}
0=x-4 \\
0=x \\
4=x \\
\text { CU: } x=0, A
\end{array} 4 \in[-2,0]
\end{aligned}
$$

$$
\varepsilon v: x=-0,2
$$

$$
\begin{aligned}
& f(0)=22 \text { MAx } \\
& f(-2)=-10 \quad \text { MIN } \\
& f(2)=6 \\
& c p:(0,22) \\
& \varepsilon p:(-2,-10),(2,6)
\end{aligned}
$$

Absolute Max: $(0,2$ )
Absolute Min: $(-2,-10)$
\#6) $f(x)=x^{4}-4 x^{3}+4 x^{2}$ on $[0,3]$

$$
\varepsilon v: x=0,3
$$

$$
f(0)=0 \mathrm{M} / \mathrm{N}
$$

$$
f(1)=1
$$

$$
f(z)=0 \mathrm{MIN}
$$

$$
f(3)=9 \text { max }
$$

$$
C P:(0,0),(1,1)
$$

$$
\varepsilon p:(0,0),(3,9)
$$

Absolute Max: $(3,9)$
Absolute Min: $(0,0),(2,0)$

$$
\begin{aligned}
& f^{\prime}(x)=4 x^{3}-12 x^{2}+8 x \\
& 0=4 x\left(x^{2}-3 x+2\right) \\
& 0=4 x(x-2)(x-1) \\
& 0=4 x>0=x-2) 0=x-1 \\
& 0=x \quad 2=x \quad\{1=x \\
& C v: x=0,1,2
\end{aligned}
$$

Graphing \& Basic Optimization
Review Chapter 5
\#7) The fuel economy of an average compact car in Gnaden is $E(x)=-0.015 x^{2}+1.14 x+8.3$, where $x$ is the driving speed (in miles per hour $20 \leq x \leq$ 60 ). At what speed is fuel economy the greatest? What is the greatest mpg?

$$
\begin{aligned}
\varepsilon^{\prime}(x) & =-0.030 x+1.14 \\
0 & =-0.030 x+1.14 \\
0.030 x & =1.14 \\
c v: x & =38 \\
\varepsilon v: x & =20,60 \\
\varepsilon(38) & =29.86 \mathrm{max} \\
\varepsilon(70) & =25.1 \\
\varepsilon(60) & =25.7
\end{aligned}
$$

Sentence Answer
At 38 mph the car is most efficient at 29.86 mpg .
\#8) Two Wheel Deals finds that it costs $\$ 70$ to manufacture each bicycle, and fixed costs are $\$ 100$ per day. The price function is $p(x)=270-10 x$, where $p$ is the price (in collars) at which exactly $x$ bicycles will be sold. Find the quantity Two Wheel Deals should produce and the price it should charge to maximize profit. Also find the maximum profit.

$$
\begin{aligned}
& C(x)=70 x+100 \\
& R(x)=p(x) q t y \\
& =(270-10 x) x \\
& R(x)=270 x-10 x^{2} \\
& P(x)=R(x)-C(x) \\
& =\left(270 x-10 x^{2}\right)-(70 x+100) \\
& P(x)=-10 x^{2}+200 x-100 \\
& P^{\prime}(x)=-20 x+200 \\
& 0=-20 x+200 \\
& 20 x=20 \\
& x=10 \\
& P^{\prime \prime}(x)=-2 \\
& P^{\prime \prime}(10)=\text { neg, } C C D, M A X \\
& p(10)=270-10(10) \quad P(10)=-10(10)^{2}+200(10)-100 \\
& =270-100 \\
& p(10)=170 \\
& =-10(100)+2000100 \\
& =-1000+2000100 \\
& \begin{aligned}
& =1000-100 \\
P(10) & =900
\end{aligned}
\end{aligned}
$$

Quantity that should be produced $=10$

Price to be sold $=\$ 170$

$$
\text { Maximum Profit }=\$ 900
$$

Sentence Answer
Two Wheel Deals should set their price at $\$ 70$ per bike and $\$ 110$ bikes. This will max their profit at $\$ 900$.

Graphing \& Basic Optimization
Review Chapter 5
\#9) A farmer wants to make two identical rectangular enclosures along a straight river, as in the diagram shown below. If he has 600 yards of fence, and if the sides along the river need no fence, what should be the dimensions of each enclosure if the total area is to be maximized?

$x=$ length // to rawer of each enclosure
$y=\mid$ engh $\perp$ to river
$A=$ Area
$P=$ perimeter


Side parallel to the river of one enclosure $=150$ y ard $S$
Side perpendicular to the river of one enclosure $=100 \mathrm{y}$ ard S
Total Maximized Area $=30,000$ y ard $s^{2}$

Sentence Answer
To max the fatal area to $30,000 \mathrm{yd}^{2}$, the side parallel to the river (of each enclosure) should be 150 yards and the sides 1 to river should be 100 yds .

Graphing \& Basic Optimization
Review Chapter 5
\#10) If the perimeter of the window below is to be 18 feet, find the dimensions ( $x$ and $r$ ) that maximize the area of the window. (hint: The perimeter is 3 sides of a rectangle and half a circle.)


$$
\begin{aligned}
& A=\text { Ares } \\
& P=\text { perimeter }
\end{aligned}
$$

$A_{\text {total }}=\frac{1}{2} A_{0}+A_{R e c}$

$$
=\frac{1}{2} \pi r^{2}+-2 r(x)
$$

$$
A=\frac{1}{2} \pi r^{2}+2 r x
$$

$$
A=\frac{1}{2} \pi r^{2}+2 r\left(9-r-\frac{\pi}{2} r\right)
$$

$$
A=\frac{1}{2} \pi r^{2}+18 r-2 r^{2}-\pi r^{2}
$$

$$
A^{\prime}=\pi r+18-4 r-2 \pi r
$$


$x=2.5$ feet
$r=3.6$ feet
Total Maximized Area $=27.8 \mathrm{ft}^{2}$

Sentence Answer: To max area of window to $27.8 \mathrm{ft}^{2}, r$ and $x$ should be 2.5 ft and 3.6 ft , respectively.

