6.2 - More Maximizing Applications

Ex A: Maximizing Tax Revenue

State Government Revenue
$t=$ tax rate
$S(t)=$ total sales in country
Government revenue $=S(t) \cdot t$

A nerd predict that the relationship between the tax rate t on an item and the total sales S of that item (in millions of dollars) is $s(t)=9-20 \sqrt{t}$ for $(0 \leq$ $t \leq 0.20$). Find the tax rate that maximizes revenue of the state government.

Ex B: Minimizing Package Materials

A moving company wishes to design an open-top box with a square base whose volume is exactly 32 cubic feet. Find the dimensions of the box requiring the least amount of materials.

Pro Tips
\#1) Assign and define variables to each dimension of the box.
\#2) Make equations for volume and surface area. Then use both of those equations to make a surface area function, $S A$.
\#3) To minimize surface area, set $S A^{\prime}=0$ and solve. Make sure it is a min by using the second derivative test.
\#4) Use x to answer the question asked.

Advanced Techniques

6.2 - More Maximizing Applications

Ex C: Minimizing Cost

George wants to build a fence around his pet, Imagidragon. Imagidragon demands an area of 1000 square feet to frolic in the wind. The front and back of the dragon's play area will be a brick fence, priced at $\$ 20$ per linear foot. The other two sides will be fenced with a cotton balls costing $\$ 1$ per linear foot. Find the dimensions that will minimize the cost and find the minimum cost.

Pro Tips

\#1) Assign and define variables to each dimension of the box.
\#2) Make equations for area and cost. Then use both of those equations to make a cost function in one variable.
\#3) To minimize cost, set $C(x)^{\prime}=$ 0 and solve.
Make sure it is a min by using the second derivative test.
\#4) Use x to answer the question asked.

