Advanced Techniques 6.3 – Explicit vs Implicit Differentiation

Explicit vs Implicit

Explicit Function: A function written in the form y = f(x), where y is defined in terms of x alone.

If $x^2 + y^2 = 100$ find y' using explicit differentiation.

Implicit Function: A function where y is defined by an equation in x and y, such as $x^2 + y^2 = 100$.

If $x^2 + y^2 = 100$ find y' using implicit differentiation.

Find the slope of the circle $x^2 + y^2 = 100$ at the point (6, 8)

Find the slope of the circle $x^2 + y^2 = 100$ at the point (6, 8)

Find the slope of the circle $x^2 + y^2 = 9$ at the point (-6, 8)

Find the slope of the circle $x^2 + y^2 = 9$ at the point (-6, 8)

Advanced Techniques 6.3 – Explicit vs Implicit Differentiation

Ex A: Find each derivative implicitly or explicitly. #1) $\frac{d}{dx}y^{10}$

#1)
$$\frac{d}{dx}y^{10}$$

#4)
$$\frac{d}{dx}x$$

#2)
$$\frac{d}{dx}x^{10}$$

$$\#5) \frac{d}{dx}y$$

$$#3) \frac{d}{dx}(x^5y^7)$$

$$(5x^3y^2)$$

Advanced Techniques 6.3 – Explicit vs Implicit Differentiation

Method for finding dy/dx from an equation that defines y implicitly involves three steps:

- 1. Differentiate both sides of the equation with respect to x.
- 2. Collect all terms involving $\frac{dy}{dx}$ on one side, and all others on the other side. 3. Factor out the $\frac{dy}{dx}$ and solve for it by dividing.

Ex B: Finding and Evaluating an Implicit Derivative

For
$$x^4 + y^4 - 2x^2y^2 = 10$$
 find $\frac{dy}{dx}$ and evaluate it at $x = 2$, $y = 1$.

Advanced Techniques 6.3 – Explicit vs Implicit Differentiation

Consumer Demand

In economics, a demand equation is the relationship between the price p of an item and the quantity x that consumers will demand at that price. (All prices are in dollars, unless otherwise stated).

Ex C:	Interpreting an	Implicit Derivative	•
-------	-----------------	---------------------	---

For the demand equation $x = \sqrt{1900 - p^3}$ find $\frac{dp}{dx}$. Then evaluate it at x = 30, p = 10 and interpret your answer.

Implicitly	Explicitly	With intelligence
\		