Advanced Techniques

 6.3 - Explicit vs Implicit Differentiation

 6.3 - Explicit vs Implicit Differentiation

 Explicit vs Implicit

 Explicit vs Implicit}

Explicit Function: A function written in the form $\mathrm{y}=$ $f(x)$, where y is defined in terms of x alone.

If $x^{2}+y^{2}=100$ find y^{\prime} using explicit differentiation.

$$
\begin{aligned}
& y^{2}=100-x^{2} \\
& \frac{d}{d x} y=\frac{d}{d x}\left(100-x^{2}\right)^{\frac{1}{2}} \\
& y^{\prime}=\frac{1}{2}\left(100-x^{2}\right)^{-\frac{1}{2}} \frac{d}{d x}\left(100-x^{2}\right) \\
& y^{\prime}=\frac{1}{2 \sqrt{100-x^{2}}}(-2 x) \\
& y^{\prime}=\frac{-2 x}{2 \sqrt{100-x^{2}}} \\
& y^{\prime}=\frac{-x}{\sqrt{100-x^{2}}}
\end{aligned}
$$

Find the slope of the circle $x^{2}+y^{2}=100$ at the point $(6,8)$

$$
\begin{aligned}
y^{\prime}(6,8) & =\frac{-6}{\sqrt{100-(6)^{2}}} \\
& =\frac{-6}{\sqrt{100-36}} \\
& =\frac{-6}{\sqrt{64}} \\
& =\frac{-6}{8} \\
y^{\prime}(6,8) & =\frac{-3}{4}
\end{aligned}
$$

Find the slope of the circle $x^{2}+y^{2}=9$ at the point $(-6,8)$

$$
\begin{aligned}
y^{\prime}(-6,8) & =\frac{-(-6)}{\sqrt{100-(-6)^{2}}} \\
& =\frac{6}{\sqrt{100-36}} \\
& =\frac{6}{\sqrt{64}} \\
& =\frac{6}{8} \\
y^{\prime}(-6,8) & =\frac{3}{4}
\end{aligned}
$$

Implicit Function: A function where y is defined by an equation in x and y, such as $x^{2}+y^{2}=100$.

If $x^{2}+y^{2}=100$ find y^{\prime} using implicit differentiation.

$$
\begin{aligned}
\frac{d}{d x} x^{2}+\frac{d}{d x} y^{2} & =\frac{d}{d x} 100 \\
2 x+2 y \frac{d y}{d x} & =0 \\
2 y \frac{d x}{d x} & =-2 x \\
\frac{d y}{d x} & =\frac{-x}{y}
\end{aligned}
$$

Find the slope of the circle $x^{2}+y^{2}=100$ at the point $(6,8)$

$$
\begin{aligned}
\left.\frac{d y}{d x}\right|_{(6.8)} & =\frac{-(6)}{8} \\
& =\frac{-3}{4}
\end{aligned}
$$

Find the slope of the circle $x^{2}+y^{2}=9$ at the point $(-6,8)$

$$
\begin{aligned}
\left.\frac{d y}{d x}\right|_{(-6.8)} & =\frac{-(-6)}{8} \\
& =\frac{3}{4}
\end{aligned}
$$

Advanced Techniques

6.3 - Explicit vs Implicit Differentiation

Ex A: Find each derivative implicitly or explicitly.
\#1) $\frac{d}{d x} y^{10}=10 y \frac{d y}{d x}$
\#2) $\frac{d}{d x} x^{10}=10 x^{9}$
\#3) $\frac{d}{d x}\left(x^{5} y^{7}\right)=\frac{d}{d x} x^{5} \cdot y^{7}+x^{5} \frac{d}{d x} y^{7}$
$=5 x^{4} y^{7}+x^{5}\left(7 y^{6}\right) \frac{d y}{d x}$
$=5 x^{4} y^{7}+7 x^{5} y^{6} \frac{d y}{d x}$
\#4) $\frac{d}{d x} x=1$
\#5) $\frac{d}{d x} y=\frac{d y}{d x}$
\#6) $\frac{d}{d x}\left(5 x^{3} y^{2}\right)=\frac{d}{d x}\left(5 x^{3}\right) y^{2}+5 x^{3} \cdot \frac{d}{d x}\left(y^{2}\right)$

$$
=15 x^{2} y^{2}+5 x^{3} \partial_{y} \cdot \frac{d y}{d x}
$$

$$
=15 x^{2} y^{2}+10 x^{3} y \frac{d y}{d x}
$$

Advanced Techniques
6.3 - Explicit vs Implicit Differentiation

Method for finding dy/dx from an equation that defines y implicitly involves three steps:

1. Differentiate both sides of the equation with respect to x.
2. Collect all terms involving $\frac{d y}{d x}$ on one side, and all others on the other side.
3. Factor out the $\frac{d y}{d x}$ and solve for it by dividing.

Ex B: Finding and Evaluating an Implicit Derivative
For $x^{4}+y^{4}-2 x^{2} y^{2}=10$ find $\frac{d y}{d x}$ and evaluate it at $\mathrm{x}=2, \mathrm{y}=1$.

$$
\begin{aligned}
& \frac{d}{d x} x^{4}+\frac{d}{d x} y^{4}-\frac{d}{d x}\left(2 x^{2} y^{2}\right)=\frac{d}{d x}(10) \\
& 4 x^{3}+4 y^{3} \frac{d y}{d x}-\left[\frac{d}{d x}\left(2 x^{2}\right) y^{2}+2 x^{2} \frac{d}{d x}\left(y^{2}\right)\right]=0 \\
& 4 x^{3}+4 y^{3} \frac{d y}{d x}-\left[4 x y^{2}+2 x^{2} \cdot 2 y \cdot \frac{d y}{d x}\right]=0 \\
& 4 x^{3}+4 y^{3} \frac{d y}{d x}-4 x y^{2}-4 x^{2} y \frac{d y}{d x}=0 \\
& 4 y^{3} \frac{d y}{d x}-4 x^{2} y \frac{d y}{d x}=-4 x^{3}+4 x y^{2} \\
& \frac{d y}{d x}\left(4 y^{3}-4 x^{2} y\right)=-4 x^{3}+4 x y^{2} \\
& \frac{d y}{d x}=\frac{4 x\left(-x^{2}+y^{2}\right)}{4 y^{3}-4 x^{2} y} \\
& \frac{d y}{d x}=\frac{4 x\left(-x^{2}+y^{2}\right)}{4 y\left(y^{2}-x^{2}\right)} \\
& \frac{d y}{d x}=\frac{x}{y} \\
& \frac{d y}{d x}=\frac{x}{-y} \\
& \left.\frac{d y}{d x}\right|_{(2,1)}=\frac{(2)}{-(1)} \\
& \left.\frac{d y}{d x}\right|_{(2,1)}=-2
\end{aligned}
$$

Advanced Techniques

 6.3 - Explicit vs Implicit Differentiation

 6.3 - Explicit vs Implicit Differentiation}

Consumer Demand

In economics, a demand equation is the relationship between the price p of an item and the quantity x that consumers will demand at that price. (All prices are in dollars, unless otherwise stated).

Ex C: Interpreting an Implicit Derivative
For the demand equation $x=\sqrt{1900-p^{3}}$ find $\frac{d p}{d x}$. Then evaluate it at $\mathrm{x}=30, \mathrm{p}=10$ and interpret your answer.

$$
\begin{aligned}
& \text { Implicitly } \\
& \begin{array}{c}
\text { Implicitly } \\
\frac{d}{d x}(x)=\frac{d}{d x}\left(1900-p^{3}\right)^{\frac{1}{2}}
\end{array} \\
& 1=\frac{1}{2}\left(1900-p^{3}\right)^{-\frac{1}{2}} \frac{d}{d x}\left(1900 \cdot p^{3}\right) \\
& 1=\frac{1}{\partial \sqrt{1900 \cdot p^{3}}}\left(-3 p^{2}\right) \frac{d p}{d x} \\
& 1=\frac{-3 p^{2}}{2 \sqrt{1900-p^{3}}} \frac{d P}{d x} \\
& \frac{2 \sqrt{1900-p^{3}}}{-3 p^{2}}=\frac{d p}{d x} \\
& \left.\frac{d p}{d x}\right|_{(30,10)}=\frac{2 \sqrt{1900-(10)^{3}}}{-3(10)^{2}} \\
& =\frac{2 \sqrt{1900-1000}}{-3(100)} \\
& =\frac{2 \sqrt{900}}{-300} \\
& =\frac{2(30)}{-300} \\
& \begin{aligned}
\left.\frac{d p}{d x}\right|_{(30,10)} & =\frac{2}{-10} \\
& =\frac{1}{-5}
\end{aligned}
\end{aligned}
$$

