Advanced Techniques
6.4A - Related Rates

Hint: the volume of a sphere exists :)
Chocolate
\#1) George left his large ball of chocolate in the sun so that its radius is decreasing at the rate of 2 inches per minute. How fast is the volume decreasing at the moment when the radius is 3 inches?

$$
\begin{aligned}
& \frac{d r}{d t}=-\frac{2 i n}{1 \min } \quad \text { FinD }\left.\frac{d V}{d t}\right|_{r=3} \\
& r=\text { radius (inches) } \\
& t=\text { time (minutes) } \\
& V=\text { Volume }\left(\mathrm{in}^{3}\right) \\
& V_{\text {© }}=\frac{4}{3} \pi r^{3} \\
& \frac{d}{d t}(V)=\frac{d}{d t}\left(\frac{4}{3} \pi r^{3}\right) \\
& \frac{d v}{d t}=4 \pi r^{2} \frac{d r}{d t} \\
& \frac{d v}{d t}=4 \pi r^{2}(-2) \\
& \frac{d v}{d t}=-8 \pi r^{2} \\
& \left.\frac{d V}{d t}\right|_{r=3}=-8 \pi(3)^{2} \\
& =-8 \pi(a) \\
& =-72 \pi \\
& \left.\frac{d V}{d t}\right|_{r=3} \simeq-226.2 \mathrm{in}^{3} / \mathrm{min}
\end{aligned}
$$

Sentence Answer:
When the radius of the ball of choc is 3 inches, the volume is decreasing by 20.2 in 3 per minute.

Gallstones
\#2) A gallstone is forming in George's gallbladder so that its radius is growing at the rate of 1 centimeter per year. How fast is its volume growing at the moment when the radius is 2 centimeters?

$$
\begin{aligned}
& V_{\circledast}=\frac{4}{3} \pi r^{3} \\
& \frac{d}{d t} V=\frac{d}{d t}\left(\frac{4}{3} \pi r^{3}\right)
\end{aligned}
$$

$$
\frac{d v}{d t}=4 \pi r^{2} \frac{d r}{d t}
$$

$$
\frac{d v}{d t}=4 \pi r^{2}(1)
$$

$$
\frac{d v}{d t}=4 \pi r^{2}
$$

$$
\begin{aligned}
\left.\frac{d V}{d t}\right|_{r=2} & =4 \pi(2)^{2} \\
& =4 \pi \cdot 4 \\
& =16 \pi \\
\left.\frac{d V}{d t}\right|_{r=2} & \approx 50.3 \mathrm{~cm}^{3} / \text { year }
\end{aligned}
$$

Sentence Answer:
When the radius of the gallstone is 2 cm , the volume is increasing by $50.3 \mathrm{~cm}^{3}$ per Year.

Advanced Techniques
6.4A - Related Rates

Gumball
\#3) George is entering a chewed gumball contest. The radius of his spherical gumball is growing by $1 / 2$ centimeter per week. Find how rapidly the volume is increasing at the moment when the radius is 4 centimeters.

$$
\begin{aligned}
& \frac{d r}{d t}=\frac{\frac{1}{2} \mathrm{~cm}}{1 \text { week }} \\
& \text { FIND }\left.\frac{d V}{d t}\right|_{J=4} \\
& r=\text { radius (cm) } \\
& t=\text { time (week) } \\
& V=\operatorname{Volume}\left(\mathrm{cm}^{3}\right) \\
& V_{(r)}=\frac{4}{3} \pi r^{3} \\
& \frac{d}{d t}(V)=\frac{d}{d t}\left(\frac{4}{3} \pi r^{3}\right) \\
& \frac{d V}{d r}=4 \pi r^{2}\left(\frac{d r}{d t}\right) \\
& \frac{d V}{d r}=4 \pi r^{2}\left(\frac{1}{2}\right) \\
& \frac{d V}{d r}=2 \pi r^{2} \\
& \left.\frac{d V}{d r}\right|_{r=4}=\operatorname{D\pi }(4)^{2} \\
& =2 \pi(16) \\
& =32 \pi \\
& \left.\frac{d v}{d r}\right|_{r=4} \approx 100.5 \mathrm{~cm}^{3} / \text { work }
\end{aligned}
$$

Sentence Answer:
When the radius of the gam is 4 inches, the volume is increasing by 100.5 in 3 per week

Pig Feet
\#4) George's profit from selling x boxes pig feet is $P=1000 x-\frac{1}{2} x^{2}$ dollars. If sales are growing at the rate of 20 per day, find how rapidly profit is growing (in dollars per day) when 600 boxes have been sold.

$$
\begin{aligned}
& x=\text { sales (boxes of pig feet) } \\
& P=\text { profit } \$ \\
& t=\text { time (day) }
\end{aligned} \quad \begin{aligned}
& \frac{d x}{d t}=\frac{20 \text { boxes }}{1 \text { day }} \\
& \text { FIND }\left.\frac{d P}{d t}\right|_{x=600}
\end{aligned}
$$

$$
\begin{aligned}
P & =1000 x-\frac{1}{2} x^{2} \\
\frac{d}{d t} P & =\frac{d}{d t}(1000 x)-\frac{d}{d t}\left(\frac{1}{2} x^{2}\right) \\
\frac{d P}{d t} & =1000 \frac{d x}{d t}-x \frac{d x}{d t} \\
\frac{d P}{d t} & =1000(20)-x(20) \\
\frac{d P}{d t} & =20.000-30 x
\end{aligned}
$$

$$
\begin{aligned}
\left.\frac{d P}{d t}\right|_{x=600} & =20,000-20(600) \\
& =20,000-12,000
\end{aligned}
$$

$$
\left.\frac{d P}{d t}\right|_{x=600}=8,000
$$

Sentence Answer:
When 600 boxes of pigs feet have been sold, the profit is increasing by $\$ 8000$ per feet

Advanced Techniques
6.4A - Related Rates

Tons of Feathers
\#5) George's revenue from selling x tons of feathers is given as $R=1000 x-x^{2}$ dollars. If sales are increasing at the rate of 80 per day, find how rapidly revenue is growing (in dollars per day) when 400 tons have been sold.

$$
\begin{aligned}
& x=\text { sales(tous of feathers) } \\
& R=\text { Revenue } \$ \\
& t=\text { time }(\text { days) }
\end{aligned} \quad \begin{aligned}
& \frac{d x}{d t}=\frac{80 \text { tons }}{1 \text { day }} \\
& \text { FIND }\left.\frac{d R}{d t}\right|_{x=400}
\end{aligned}
$$

$$
\begin{aligned}
R & =1000 x-x^{2} \\
\frac{d}{d t} R & =\frac{d}{d t}(1000 x)-\frac{d}{d t}\left(x^{2}\right) \\
\frac{d R}{d t} & =1000 \frac{d x}{d t}-3 x \frac{d x}{d t} \\
\frac{d R}{d t} & =1000(80)-2 x(80) \\
\frac{d R}{d t} & =80,000-160 x \\
\left.\frac{d R}{d t}\right|_{x}=400 & =80,000-160(400) \\
& =80,000-64,000 \\
\left.\frac{d R}{d t}\right|_{x}=400 & =\$ 16,000 / \text { day }
\end{aligned}
$$

Sentence Answer:
when 400 tons of feathers have been sold, the revenue is increasing by $\$ / 6000$ per day.

Accidents
\#6) The number of traffic accidents George's stench causes per year in a population p is predicted to be $T=0.002 p^{3 / 2}$. If the population is growing by 500 people per year, find the rate at which traffic accidents will be rising when the population is 40,000.

$$
\begin{aligned}
& p=\text { population (geode) } \\
& T=\text { traffic accidents } \\
& t=\text { time (year) } \\
& \text { FIND }\left.\frac{d T}{d t}\right|_{p=40,000} \\
& T=0.000 p^{3 / 2} \\
& \frac{d}{d t} T=\frac{d}{d t}\left(0.002 p^{3 / 2}\right) \\
& \frac{d T}{d t}=0.003 p^{\frac{1}{2}} \frac{d p}{d t} \\
& \frac{d T}{d t}=0.003 \sqrt{P}(500) \\
& \frac{d T}{d t}=1.5 \sqrt{p} \\
& \left.\frac{d T}{d t}\right|_{p=40.000}=1.5 \sqrt{40,000} \\
& =1.5(200) \\
& \left.\frac{d T}{d t}\right|_{p=40.000}=300 \text { Traffic occident } / \text { Year }
\end{aligned}
$$

Sentence Answer:
when the Pop' n is 40,000 people, the number of accidents George's stench is causing is increasing by 300 acciderls per year

Advanced Techniques
6.4A - Related Rates

Carnival Slaying
\#7) George is a carny and witnesses many types of crimes. The number of slayings at George's carnival of population p is expected to be $W=0.003 p^{4 / 3}$. If the population is growing by 1000 people per year, find the rate at which the number of carnival slayings will be increasing when the population is $1,000,000$.

$$
\begin{aligned}
& P=\text { population of carnival } \quad \frac{d P}{d t}=\frac{1000 \text { people }}{1 \text { year }} \\
& W=\#_{\text {of }} \text { slayings } \\
& t=\text { time in years } \\
& \left.\frac{d W}{d t}\right|_{p=1,000,000} \\
& W=0.003 p^{\frac{4}{3}} \\
& \frac{d}{d t}(w)=\frac{d}{d t}\left(0.003 p^{4 / 3}\right) \\
& \frac{d w}{d t}=0.004 p^{\frac{1}{3}} \frac{d p}{d t} \\
& \frac{d w}{d t}=0.004 \sqrt[3]{P}(1000) \\
& \frac{d w}{d t}=4 \sqrt[3]{p} \\
& \left.\frac{d w}{d t}\right|_{\rho=1,000,000}=4 \sqrt[3]{1.000,000} \\
& =4(1000) \\
& \left.\frac{d w}{d t}\right|_{\rho=1,000,000}=4000 \text { slayings per year }
\end{aligned}
$$

Sentence Answer:
when the carnival pop n is $1,000,000$, the number of carnival slayings is increasing by 4000 slayings pes year.

Speeding
\#8) A traffic patrol helicopter is stationary a quarter of a mile directly above a highway, as shown in the diagram below. Its radar detects George's moped whose line-of-sight distance from the helicopter is half a mile and is increasing at the rate of 57 mph . Is the moped exceeding the highway's speed limit of 60 mph ?

$$
\begin{gathered}
x^{2}+y^{2}=z^{2} \\
x^{2}+(0.25)^{2}=z^{2} \\
x^{2}+0.625=z^{2} \\
\frac{d}{d t}\left(x^{2}\right)+\frac{d}{d t}(0.605)=\frac{d}{d t}\left(z^{2}\right)
\end{gathered}
$$

when $z=0.5$

$$
(.25)^{2}+x^{2}=(0.5)^{2}
$$

$$
\begin{aligned}
\partial x \frac{d x}{d t} & =\partial z \frac{d z}{d t} \\
\frac{d x}{d t} & =\frac{z}{x} \frac{d z}{d t}
\end{aligned}
$$

$$
x \approx .433
$$

$$
\begin{aligned}
\frac{d x}{d t} & =\frac{z}{x}(57) \\
\left.\frac{d x}{d t}\right|_{\left\lvert\, z=\frac{1}{2}\right.} & \approx \frac{\left(\frac{1}{2}\right)}{(.433)} 57 \\
& \approx 65.8 \mathrm{mph}
\end{aligned}
$$

Sentence Answer:
when George is $\frac{1}{2}$ mile from the chopper, he is breaking the speed limit by traveling at 65.8 miles per hour.

Advanced Techniques
 6.4A - Related Rates

\#1) At the moment the radius is 3 inches, the volume is decreasing by $72 \pi \approx 226 \mathrm{in}^{3}$ in per hour.
\#2) When the radius is 2 mm , the volume is growing at $16 \pi \approx 50.27 \mathrm{~mm}^{3}$ per minute.
\#3) When the radius is 4 cm , the volume of the tumor is growing at $32 \pi \approx 101 \mathrm{~cm}^{3}$ per weak.
\#4) When 600 units have been sold, the profit is growing by $\$ 8000$ per day.
\#5) When 400 units have been sold, the revenue is growing by $\$ 16,000$ per day.
\#6) When the population is 40,000 people, traffic accidents will be rising by 300 accidents per year.
\#7) When the population is $1,000,000$ people, the number of carnival slayings is increasing by 400 cases per year.
\#8) The car is traveling at 65.8 mph , so yes the car is speeding.

Advanced Techniques
 6.4A - Related Rates

\#8)

Facts:
$\mathrm{z}=$ line of sight distance in miles
$\mathrm{x}=$ horizontal distance in miles
$\frac{d z}{d t}=57 \mathrm{miles} /$ hour
Find $\frac{d x}{d t}$ evaluated at $\mathrm{z}=.5$ miles

From Pythagoras
$x^{2}+0.25^{2}=\mathrm{z}^{2}$
$\mathrm{x}^{2}+0.25^{2}=0.5^{2}$
$\mathrm{x}^{2}+0.0625=0.25$
$\mathrm{x}^{2}=.1875$
$\mathrm{x} \approx 0.433$

From Pythagoras

$$
\begin{array}{rlrl}
\mathrm{x}^{2}+0.25^{2} & =\mathrm{z}^{2} & \\
\frac{d}{d t} \mathrm{x}^{2}+\frac{d}{d t} 0.25^{2} & =\frac{d}{d t} \mathrm{z}^{2} & & \text { Found } \frac{d}{d t} \\
2 \mathrm{x} \frac{d z}{d t}+0 & =2 \mathrm{z} \frac{d z}{d t} & & \text { Simplified } \\
2 \mathrm{x} \frac{d z}{d t} & =2 \mathrm{z} \frac{d z}{d t} & & \text { Simplified } \\
\frac{d z}{d t} & =\frac{2 z}{2 x} \frac{d z}{d t} & & \text { Solving for } \frac{d z}{d t}, \text { I divided by } 2 \mathrm{x} \\
& =\frac{z}{x} \frac{d z}{d t} & & \text { The } 2 \text { 's canceled, because } 2 / 2= \\
\frac{d z}{d t} \text { evaluated } \approx \frac{0.5}{.433} 57 & & \text { Substituted } \frac{d z}{d t}=57, \mathrm{z}=.5, \mathrm{x} \approx 0.433 \\
& \approx \frac{0.5(57)}{.433} & & \text { Simplified } \\
& \approx 65.8 \text { miles per hour } & \text { Simplified }
\end{array}
$$

Yes, the moped is exceeding the highway's speed of 60 mph . George is traveling at a rate of approximately 65.8 mph .

