Advanced Techniques

6.4 - Related Rates

Sometimes both variables in an equation will be functions of a third variable, usually t for time. For example, for a seasonal product such as fur coats, the price p and weekly sales x will be related by a demand equation, and both price p and quantity x will depend on the time of year.

Differentiating both sides of the demand equation with respect to time t will give an equation relating the derivatives $\frac{d p}{d t}$ and $\frac{d x}{d t}$

Such "related rates" equations show how fast one quantity is changing relative to another.

Ex A: Finding Related Rates

\#2) A boat yard's total profit from selling x outboard motors is $P(x)=-x^{2}+$ $1000 x-2000$. If the outboards are selling at the rate of 20 per week, how fast is the profit changing when 400 motors have been sold?
\#1) A pebble thrown into a pond causes circular ripples to radiate outward. If the radius of the outer ripple is growing by 2 feet per second, how fast is the area of the circle growing at the moment when the radius is 10 feet?

Since the radius is increasing by 2 feet per second, $\frac{d r}{d t}=$
Pro Tips

Advanced Techniques

6.4 - Related Rates

\#3) A study of urban pollution predicts that sulfur oxide emissions in a city will be $S(x)=0.1 x^{2}+20 x+2$ tons, where x is the population (in thousands). The population of the city t years from now is expected to be $x=20 \sqrt{t}+800$ thousand people. Find how rapidly sulfur oxide pollution will be increasing 4 years from now.

Pro Tips

