Basic Integration 7.4 - Definite Integrals \& Riemann Sum

This section will illustrate how to calculate the area under curves. This is called a definite integral of a function.

Definite Integral

Area under \boldsymbol{f} from a to b Approximated by \boldsymbol{n} LeftRectangles

Approximating the area under a nonnegative function f by n rectangles...

1. Calculate the rectangle width $\Delta x=\frac{b-a}{n}$.
2. Find x -values $\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}$ by successive additions of Δx beginning with $\mathrm{x}_{1}=\mathrm{a}$.
3. Calculate the sum: $f\left(\mathrm{x}_{1}\right) \bullet \Delta x+f\left(\mathrm{x}_{2}\right) \cdot \Delta x+$ $f\left(\mathrm{x}_{3}\right) \cdot \Delta x+\ldots+f\left(\mathrm{x}_{\mathrm{n}}\right) \cdot \Delta x$

The Riemann Sum

The sum in step 3 is called the Riemann sum. The limit of the Riemann sum as the number n approaches infinity gives the area under the curve and is called the definite integral of the function f from a to b, written $\int_{a}^{b} f(x) d x$.

Basic Integration

7.4 - Definite Integrals \& Riemann Sum

Ex A: Finding area given a graph
\#1) Find the sum of the areas of the shaded rectangles. Round answers to two decimal places.

$$
\Delta x=\frac{b-a}{n}=\frac{(4)-(1)}{3}=\frac{3}{3}=1
$$

$$
\begin{aligned}
A=\int_{1}^{4} x^{3} d x & \approx f\left(x_{1}\right) \Delta x+f\left(x_{2}\right) \Delta x+f\left(x_{3}\right) \Delta x \\
& \approx f(1) \cdot 1+f(2) \cdot 1+f(3) \cdot 1 \\
& \approx(1)^{3} \cdot 1+(2)^{3} \cdot 1+(3)^{3} \cdot 1 \\
& \approx 1 \cdot 1+8 \cdot 1+27 \cdot 1 \\
& \approx 1-8+28 \\
A & \approx 37 n^{2}
\end{aligned}
$$

Ex B: Approximating Area by Rectangles.
\#1) Approximate the area under $f(x)=x^{2}$ from 1 to 2 by five rectangles. Use rectangles with equal bases and with heights equal to the height of the curve at the left-hand edge of the rectangles.

$$
\Delta x=\frac{b-a}{n}=\frac{(2)-(1)}{5}=\frac{1}{5}
$$

$$
\begin{aligned}
A=\int_{1}^{2} x^{2} d x & \approx f\left(x_{1}\right) \cdot \Delta x+f\left(x_{2}\right) \cdot \Delta x+f\left(x_{3}\right) \Delta x+f\left(x_{4}\right) \Delta x+f\left(x_{5}\right) \Delta x \\
& \approx f(1) \cdot \frac{1}{5}+f\left(\frac{6}{5}\right) \cdot \frac{1}{5}+f\left(\frac{7}{5}\right) \cdot \frac{1}{5}+f\left(\frac{8}{5}\right) \cdot \frac{1}{5}+f\left(\frac{9}{5}\right) \cdot \frac{1}{5} \\
& \approx(1)^{2} \cdot \frac{1}{5}+\left(\frac{6}{5}\right)^{2} \cdot \frac{1}{5}+\left(\frac{7}{5}\right)^{2} \cdot \frac{1}{5}+\left(\frac{8}{5}\right)^{2} \cdot \frac{1}{5}+\left(\frac{9}{5}\right)^{2} \cdot \frac{1}{5} \\
& \approx 1 \cdot \frac{1}{5}+\frac{36}{25} \cdot \frac{1}{5}+\frac{49}{25} \frac{1}{5}+\frac{64}{25} \cdot \frac{1}{5}+\frac{81}{25} \cdot \frac{1}{5} \\
& \approx \frac{25}{125}+\frac{36}{125}+\frac{49}{125}+\frac{64}{125}+\frac{81}{125} \\
& \approx \frac{255}{125} \\
& \approx 2.04 \mathrm{un}^{2}
\end{aligned}
$$

Pro Tips

1. Calculate the rectangle widths $\Delta x=\frac{b-a}{n}$
2. Find x-values x_{1}, $\mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}$ by successive additions of Δx beginning with $\mathrm{x}_{1}=\mathrm{a}$.
3. Calculate the sum:

$$
\begin{aligned}
& f\left(\mathrm{x}_{1}\right) \cdot \Delta x+f\left(\mathrm{x}_{2}\right) \bullet \Delta x \\
& +f\left(\mathrm{x}_{3}\right) \bullet \Delta x+\ldots+ \\
& f\left(\mathrm{x}_{\mathrm{n}}\right) \bullet \Delta x
\end{aligned}
$$

Basic Integration

7.4 - Definite Integrals \& Riemann Sum

C: Use the graphing calculator program Riemann to approximate the area using 10,100 , and 1000 rectangles. Round to two decimal places.
\#1) $f(x)=5 x+3, \mathrm{a}=2, \mathrm{~b}=20$

$$
\begin{aligned}
& \text { If } n=10, A \approx 963 \mathrm{un}^{2} \\
& \text { If } n=100, A \approx 1035.9 \mathrm{un}^{2} \\
& \text { If } n=1000, A \approx 1043.19 \mathrm{un}^{2}
\end{aligned}
$$

\#2) $f(x)=x^{2}+2, \mathrm{a}=2, \mathrm{~b}=10$
If $n=10 . A \approx 309.12$
If $n=100, A=342.8352$
If $n=1000, A=346.282750$
D: Use your graphing calculator to find the area under the curve. Use fnInt from the home screen and do an integral calculation from the graphing utility.
\#1) $\quad f(x)=25-x^{2},[-5,5]$
$f_{n} \operatorname{In}_{n}+\left(25-x^{2}, x,-5,5\right)=166 . \overline{6}_{u n^{2}}$
\#2) $\quad f(x)=x^{3}+1,[0,4]$
$\operatorname{fn} I_{n} t\left(x^{3}+1, x, 0,4\right)=68{u n^{2}}^{2}$

Review
Trig Review
$\sin (\theta)=\quad \csc (\theta)=$
$\cos (\theta)=\quad \sec (\theta)=$
$\tan (\theta)=\quad \cot (\theta)=$
\#1) Find $\sin \left(\frac{11 \pi}{6}\right)$
\#2) Find $\sec \left(\frac{2 \pi}{3}\right)$
\#3) Find $\cot \left(\frac{4 \pi}{3}\right)$
\#4) Find $\cos (7 \pi)$

