Basic Integration

8.2 A - Average Value

A: Find the average value of each function over the given interval
\#1) $f(x)=x^{2},[0,2]$

$$
\begin{aligned}
A V & =\frac{1}{2-0} \int_{0}^{2} x^{2} d x \\
& =\left.\frac{1}{2} \cdot \frac{1}{3} x^{3}\right|_{0} ^{2} \\
& =\left.\frac{1}{6} x^{3}\right|_{0} ^{2} \\
& =\left[\frac{1}{6}(2)^{3}\right]-\left[\frac{1}{6}(0)^{3}\right] \\
& =\frac{8}{6}-0 \\
A v & =\frac{4}{3}
\end{aligned}
$$

\#2) $f(x)=\sin (x),[0,2 \pi]$ (also explain why the answer makes sense graphically)

$$
\begin{aligned}
& \begin{array}{l}
t=\left.\frac{1}{2 \pi}(-\cos (x))\right|_{0} ^{2 \pi} \\
+\operatorname{cin}_{0}^{2 \pi} \\
+2 \pi
\end{array} \\
& \begin{array}{l}
\begin{array}{l}
\text { \{acth half the } \\
\text { graph is about } \\
\text { the } x \text { chris s hat }
\end{array}
\end{array}=\left[-\frac{1}{\partial \pi} \cos (\partial \pi)\right]-\left[-\frac{1}{2 \pi} \cos (0)\right] \\
& \begin{array}{l}
\text { the } x \text {-crit } \\
\text { the area is bela. } \\
\text { Total Areas }=0 .
\end{array}=\left[-\frac{1}{2 \pi}(1)\right]-\left[-\frac{1}{2 \pi}(1)\right] \\
& =-\frac{1}{2 \pi}+\frac{1}{2 \pi} \\
& A V=0 \\
& \text { \#3) } f(x)=x^{1 / 3},[0,10] \\
& A V=\frac{1}{10-0} \int_{0}^{10} x^{\frac{1}{3}} d x \\
& =\left.\frac{1}{10}\left(\frac{3}{4}\right) x^{4 / 3}\right|_{0} ^{10} \\
& =\left.\frac{3}{40} \sqrt[3]{x^{4}}\right|_{0} ^{10} \\
& =\left[\frac{3}{40} \sqrt[3]{(10)^{4}}\right]-\left[\frac{3}{40} \sqrt[3]{(0)^{4}}\right] \\
& =\frac{3}{40} \sqrt[3]{10000}-0 \\
& A V \approx 1.62
\end{aligned}
$$

\#4) $f(x)=\frac{1}{x^{2}},[2,7]$

$$
A v=\frac{1}{7-2} \int_{2}^{7} x^{-2} d x
$$

$$
=\left.\frac{1}{5}(-1) x^{-1}\right|_{2} ^{7}
$$

$$
=\left.\frac{-1}{5 \times}\right|_{2} ^{7}
$$

$$
=\left[\frac{-1}{5(7)}\right]-\left[\frac{-1}{5(2)}\right]
$$

$$
\left.=\frac{-1 \cdot 2}{5(7) \cdot 2}+\frac{1 \cdot 7}{5(7) \cdot 7} \text { (Common } \begin{array}{c}
\text { Denom }
\end{array}\right)
$$

$$
=\frac{-2}{70}+\frac{7}{70}
$$

$$
=\frac{5}{70}
$$

\#5) $\left.f(x)=\cos (x),\left[\frac{3 \pi}{2}, \frac{5 \pi}{2}\right] \frac{1}{14}\right]$ (give exact answer)
\#6) $f(x)=7,[10,100]$

$$
\begin{aligned}
A V & =\frac{1}{100 \cdot 10} \int_{10}^{100} 7 d x \\
& =\left.\frac{1}{90} 7 x\right|_{10} ^{100} \\
& =\frac{7(100)}{90}-\frac{7(10)}{90} \\
& =\frac{70}{9}-\frac{7}{9} \\
& =\frac{63}{9}
\end{aligned}
$$

$$
A V=7
$$

$$
\begin{aligned}
& \begin{aligned}
A V & =\frac{1}{\frac{5 \pi}{2}-\frac{3 \pi}{2}} \int_{\frac{3 \pi}{2}}^{\frac{5 \pi}{2}} \cos (x) d x \\
& =\left.\frac{1}{\frac{5 \pi}{2}} \sin (x)\right|^{\frac{5 \pi}{2}}
\end{aligned} \\
& \begin{array}{ll}
=\left.\frac{1}{\frac{2 \pi}{2}} \sin (x)\right|_{0} ^{\frac{5 \pi}{2}} & \begin{array}{l}
y=1 \\
r=1
\end{array} \underbrace{\frac{3 \pi}{2}} \sin \frac{5 \pi}{2}=1 \\
=\left.\frac{1}{\pi} \sin (x)\right|_{\frac{3 \pi}{2}} ^{\frac{3 \pi}{2}} & z=1 \sum^{\frac{3 \pi}{2}} \sin \frac{3 \pi}{2}=-1
\end{array} \\
& =\left[\frac{1}{\pi} \sin \left(\frac{5 \pi \pi}{2}\right)\right)^{\frac{3 \pi}{2}}-\left[\frac{1}{\pi} \sin \left(\frac{3 \pi-1}{2}\right)\right] \\
& =\left[\frac{1}{\pi}(1)\right]-\left[\frac{1}{\pi}(-1)\right] \\
& =\frac{1}{\pi}+\frac{1}{\pi} \\
& A V=\frac{2}{\pi}
\end{aligned}
$$

Basic Integration

8.2 A - Average Value

$$
\text { \#7) } \begin{aligned}
f(x) & =e^{5 x},[1,3] \\
A v & =\frac{1}{3-1} \int_{1}^{3} e^{5 x} d x \\
& =\left.\frac{1}{2} \cdot \frac{1}{5} e^{5 x}\right|_{1} ^{3} \\
& =\left.\frac{1}{10} e^{5 x}\right|_{1} ^{3} \\
& =\left[\frac{1}{10} e^{5(3)}\right]-\left[\frac{1}{10} e^{5(1)}\right] \\
A v & =\left(\frac{1}{10} e^{15}-\frac{1}{10} e^{5}\right)
\end{aligned}
$$

$$
\text { \#8) } f(x)=12 x^{-1},[5,11]
$$

$$
\begin{aligned}
A V & =\frac{1}{11-5} \int_{5}^{11} 12 x^{-1} d x \\
& =\left.\frac{1}{6} 12 \ln |x|\right|_{5} ^{11} \\
& =[2 \ln |1|]-[2 \ln |5|] \\
& =2[\ln 11-\ln 5] \\
A V & =2 \ln \frac{11}{5}
\end{aligned}
$$

$$
\text { \#9) } f(x)=e^{0.01 t},[0,5]
$$

$$
A v=\frac{1}{5.0} \int_{0}^{5} e^{0.01 t} d t
$$

$$
=\left.\frac{1}{5}(100) e^{0.01 t}\right|_{0} ^{5}
$$

$$
=\left.20 e^{0.01 t}\right|_{0} ^{5}
$$

$$
=\left[20 e^{0.0155)}\right]-\left[20 e^{0.01(0)}\right]
$$

$$
=20 e^{0.05}-20 e^{0}
$$

$$
=20 e^{0.05}-20
$$

$$
\text { \#10) } \begin{aligned}
& f(x)=\frac{6}{x},\left[\mathrm{e}, \mathrm{e}^{2}\right] \\
& A v=\frac{1}{e^{2}-e} \int_{e}^{e^{2}} \frac{6}{x} d x \\
&=\left.\frac{1}{e^{2}-e} 6 \ln |x|\right|_{e} ^{e^{2}} \\
&=\left[\frac{6}{e^{2}-e} \ln \left|e^{2}\right|\right]-\left[\frac{6}{e^{2}-e} \ln |e|\right] \\
&=\frac{6}{e^{2}-e} 2-\frac{6}{e^{2}-e} \\
&=\frac{1 D}{e^{2}-e}-\frac{6}{e^{2}-e} \\
& A v=\frac{6}{e^{2}-e}
\end{aligned}
$$

Shark Cages

\#11) Never missing an opportunity to make some cash, George decides to make shark cages out of the deer carcasses he finds along the highway. George's Discount Shark Cages' sales on day x are given by the function $S(x)=400 x+6 x^{2}$. Find the average sales during the first 10 days (day 0 to 10). AS : Average $\$ 06$ of cages

$$
\begin{aligned}
A S & =\frac{1}{10-0} \int_{0}^{10}\left(400 x+6 x^{2}\right) d x x=\text { day of } 5 a \\
& =\left.\frac{1}{10}\left(200 x^{2}+2 x^{3}\right)\right|_{0} ^{10} \\
& =\left.\left(20 x^{2}+\frac{1}{5} x^{3}\right)\right|_{0} ^{10} \\
& =\left[20(10)^{2}+\frac{1}{5}(10)^{3}\right]-\left[20(0)^{2}+\frac{1}{5}(0)^{3}\right] \\
& =\left[20(100)+\frac{1}{5}(1000)\right]-[0] \\
& =2000+200
\end{aligned}
$$

$$
A S=2200
$$

The average sales of shark cages for the first 10 days is s? 200 .

Basic Integration
8.2A - Average Value

George's Jose's Bear
\#12) George has an imaginary cat named José. After practicing for x days, Jose the cat can build a bear suit in $m(x)=\frac{10}{\sqrt{x}}$ minutes. Find the average time to build a bear suit from end of session 1 to the end of session 7.

$$
\begin{aligned}
& x=\text { days of practice } \\
& \text { AM }=\text { Average minutes to buildsuit } \\
& A M=\frac{1}{7-1} \int_{1}^{7} 10 x^{-\frac{1}{2}} d x \\
& =\left.\frac{1}{6} 20 x^{\frac{1}{2}}\right|_{1} ^{7} \\
& =\left[\frac{1}{6} 20 \sqrt{7}\right]-\left[\frac{1}{6} 20 \sqrt{1}\right] \\
& =\frac{1}{6} 20 \sqrt{7}-\frac{1}{6} 20 \\
& =\frac{20 \sqrt{7}}{6}-\frac{20}{6} \\
& =\frac{30 \sqrt{7}-20}{6} \\
& =\frac{2(10 \sqrt{7}-10)}{6} \\
& =\frac{10 \sqrt{7}-10}{3} \\
& A M \approx 5.5 \text { minutes }
\end{aligned}
$$

At the end of session 1 to end of 7 it will take an average of 5.5 minutes tu build bear suit.

America's Most Resilient Colony \#13) Living in George's underwear drawer, an ant colony is $A(x)=30 e^{0.1 x}$ ants strong after x months. Find the average size of the ant colony during the first year.

$$
\begin{aligned}
& x=\text { months } \\
& \text { AS = Average size of AMT Colony } \\
& A S=\frac{1}{12-0} \int_{0}^{12} 30 e^{0.1 x} d x \\
& =\left.\frac{1}{156 .} 30^{5}(10) e^{0.1 x}\right|_{0} ^{12} \\
& =\left.25 e^{0.1 x}\right|_{0} ^{12} \\
& =\left[25 e^{0.1(12)}\right]-\left[25 e^{0.1(0)}\right] \\
& =25 e^{1.2}-25 e^{0} \\
& =25 e^{1.2}-25 \\
& A S=58
\end{aligned}
$$

The average size of the ANT colony is 58 during the first year.

Basic Integration
 8.2 A - Average Value

George's Feet

\#14) The temperature of George's cold, sweaty feet at time x hours is $T(x)=-x^{2}+2 x+50$ for $0 \leq \mathrm{x} \leq 8$. Find the average temperature between time 2 and $\overline{7}$.

$$
\begin{gathered}
x=\text { hours } \\
A T=\text { Average Temp. }
\end{gathered}
$$

$$
A T=\frac{1}{7-2} \int_{2}^{7}\left(-x^{2}+2 x+50\right) d x
$$

$$
=\left.\frac{1}{5}\left(-\frac{1}{3} x^{3}+x^{2}+50 x\right)\right|_{0} ^{7}
$$

$$
=\left.\left(-\frac{1}{15} x^{3}+\frac{1}{5} x^{2}+10 x\right)\right|_{\partial} ^{7}
$$

$$
=\left[-\frac{1}{15}(3)^{3}+\frac{1}{5}(1)^{2}+10(1)\right]-\left[-\frac{1}{15}(3)^{3}+\frac{1}{5}(2)^{2}+10(0)\right]
$$

$$
=\left[-\frac{343}{15}+\frac{49}{5}+70\right]-\left[-\frac{8}{15}+\frac{4}{5}+20\right]
$$

$$
=-\frac{343}{15}+\frac{8}{15}+\frac{49}{5}-\frac{4}{5}+70-20
$$

$$
=\frac{-335}{15}+\frac{45}{5}+50
$$

$$
=\frac{-335}{15}+9+50
$$

$$
=\frac{-335}{15}+59
$$

$$
A T \approx 36.7
$$

The average temperature of George's feet
is 36.7° between hours 2 and 7 .

Answers
\#1) $\frac{4}{3}$
\#2) 0
\#3) about 1.62
\#4) $\frac{1}{14}$
\#5) $\frac{2}{\pi}$
\#6) 7
\#7) $\quad \frac{1}{10}\left(e^{15}-e^{5}\right)$
\#8) $2 \ln \frac{11}{5}$
\#9) $20 e^{0.05}-20$
\#10) $\frac{6}{e^{2}-e}$
\#11) The average sales were $\$ 2200$.
\#12) The average time to build a bear is about 4.7 minutes
\#13) The colony averaged about 58 ants.
\#14) The average temperature is about 36.7 degrees.

