Basic Integration
 8.2 - Average Value $A v=\frac{1}{b-a} \int^{b} f(x) d x$

Introduction

Much like finding the mean (average) of numbers, we can find the average value of a function using integration. To find the average value, simply divide the integral by the total length of the interval.

Average Value of a Function

Average Value of f on $[a, b]=\frac{1}{b-a} \int_{a}^{b} f(x) d x$

Explanation of Average Value

When integrating a function, you are finding the area under the curve. Any area can be expressed as a rectangle with a length and height. The length is best represented by the interval length.

$$
\begin{gathered}
\text { Area }_{\text {rectangle }}=\text { length } \cdot \text { height } \\
\int_{a}^{b} f(x) d x=(b-a) \cdot \text { height } \\
\frac{1}{b-a} \int_{a}^{b} f(x) d x=\text { height } \\
\frac{1}{b-a} \int_{a}^{b} f(x) d x=\text { Average Value }
\end{gathered}
$$

Ex A: Finding the Average Value of a Function \#1) Find the average value of $f(x)=\frac{2}{3} \sqrt{x}$ from $\mathrm{x}=0$ to $\mathrm{x}=9$.

$$
\begin{aligned}
& =\left.\frac{1}{9} \cdot \frac{2}{3} \cdot\left(\frac{2}{3}\right) x^{\frac{3}{2}}\right|_{0} ^{9} \\
& =\left.\frac{4}{81}(\sqrt{x})^{3}\right|_{0} ^{9} \\
& =\frac{4}{81}(\sqrt{(a)})^{3}-\frac{4}{81}(\sqrt{(0)})^{3} \\
& =\frac{4}{81}(3)^{3}-\frac{4}{81}(0) \\
& =\frac{4}{81} \cdot 27-0 \\
A V & =\frac{4}{3}
\end{aligned}
$$

\#2) Find the average value of $f(x)=x^{2}$ from $x=0$ to $\mathrm{x}=2$.

$$
\begin{aligned}
A v & =\frac{1}{2-0} \int_{0}^{2} x^{2} d x \\
& =\left.\frac{1}{2} \cdot \frac{1}{3} \cdot x^{3}\right|_{0} ^{2} \\
& =\left[\frac{1}{6}(2)^{3}\right]-\left[\frac{1}{6}(0)^{3}\right] \\
& =\left[\frac{8}{6}\right]-[0] \\
A V & =\frac{4}{3}
\end{aligned}
$$

Basic Integration

8.2 - Average Value

$$
\begin{aligned}
& \text { Boring Games } \\
& \text { \#3) The number of horrible, boring video games in } \\
& \text { the world is predicted to be } P(t)=263 e^{0.01 t} \text { million } \\
& \text { games, where } t \text { is the number of years since } 2005 \text {. } \\
& \text { Find the average number of horrible games between } \\
& \text { the years } 2010 \text { and } 2020 . \\
& A=\frac{1}{15-5} \int_{5}^{15} 263 e^{0.01 t} d t \\
& =\left.\left(\frac{1}{10}\right) 26300 e^{0.014}\right|_{5} ^{15} \\
& =\left.2630 e^{0.01 t}\right|_{5} ^{15} \\
& =\left[2630 e^{0.01(15)}\right]-\left[2630 e^{0.01(5)}\right] \\
& =2630 e^{0.15}-2630 e^{0.05} \\
& \approx 290.781075 \text { million gums } \\
& A \approx 290,781,075 \text { games }
\end{aligned}
$$

Review
\#1) Find $\cos \left(\frac{5 \pi}{6}\right)=-\frac{\sqrt{3}}{2}$

\#2) Find $\sin \left(\frac{5 \pi}{3}\right)=-\frac{\sqrt{3}}{2}$

\#3) Find $\tan \left(\frac{5 \pi}{4}\right)=\frac{-1}{-1}=1$

\#4) Find $\csc (3 \pi)=\frac{r}{y}=\frac{1}{0}=$ and
3π
$x=-1$
$y=0$
$r=1$

