## Limits \& Continuity

## Chapter 1 Review II <br> OPTIONAL

Find the following limits without using a graphing calculator or making tables.
\#1) $\lim _{x \rightarrow 7} \frac{x^{2}-x}{2 x-7}=\frac{(7)^{2}-(7)}{2(7)-7}$

$$
=\frac{49 \cdot 7}{14-7}
$$


\#2) $\lim _{s \rightarrow 4}\left(s^{\frac{3}{2}}-3 s^{\frac{1}{2}}\right)=(\sqrt{(4)})^{3}-3 \sqrt{(4)}$

$$
=(2)^{3}-3(2)
$$

$\begin{aligned} & =8-6 \\ \lim _{s \rightarrow 4}\left(s^{\frac{3}{2}}-3 s^{2}\right) & =2\end{aligned}$
\#3) $\lim _{x \rightarrow 0} \frac{x^{2}-x}{x^{2}+x}=\lim _{x \rightarrow 0} \frac{x(x-1)}{x(x+1)}$

$$
\begin{aligned}
& =\lim _{x \rightarrow 0} \frac{x-1}{x+1} \\
& =\frac{(0)-1}{(0)+1}
\end{aligned}
$$

$$
\lim _{x \rightarrow 0} \frac{x^{2}-x}{x^{2}+x}=-1
$$

\#4) $\lim _{h \rightarrow 0} \frac{5 x^{4} h-9 x h^{2}}{h}=\lim _{h \rightarrow 0} \frac{h\left(5 x^{4}-9 x h\right)}{h}$

$$
=\lim _{h \rightarrow 0}\left(5 x^{4}-9 x h\right)
$$



Answer each question concerning piecewise functions.
\#5) $f(x)=\left\{\begin{aligned} 5-x, & \text { if } x<4 \\ 2 x-5, & \text { if } x \geq 4\end{aligned}\right.$
a. $\lim _{x \rightarrow 4^{-}} f(x)=\lim _{x \rightarrow 4^{-}}\left(5^{-x}\right)$

b. $\quad \lim _{x \rightarrow 4^{+}} f(x)=\lim _{x \rightarrow 4^{+}}(2 x-5)$

$$
\begin{aligned}
& =2(4)-5 \\
& =8-5 \\
\lim _{x \rightarrow 4^{+}} f(x) & =3
\end{aligned}
$$

c. $\lim _{x \rightarrow 4} f(x)=$ dne.
\#6) $f(x)=\left\{\begin{aligned} 2-x, & \text { if } x<4 \\ 2 x-10, & \text { if } x \geq 4\end{aligned}\right.$
a. $\lim _{x \rightarrow 4^{-}} f(x)=\lim _{x \rightarrow 4^{-}}(2-x)$

b. $\lim _{x \rightarrow 4^{+}} f(x)=\lim _{x \rightarrow 4^{+}}(2 x-10)$ $=2(4)-10$

c. $\quad \lim _{x \rightarrow 4} f(x)=-2$

# Limits \& Continuity <br> Chapter 1 Review II <br> OPTIONAL 

\#7) For the following piecewise function:

$$
f(x)=\left\{\begin{array}{l}
5-x, \text { if } x \leq 3 \\
x-2, \text { if } x>3
\end{array}\right.
$$

a. Draw its graph


$$
\begin{array}{c|c}
x & x-2 \\
\hline 3 & 1 \\
6 & 4
\end{array}
$$


b. Find the limits as $x$ approaches 3 from the left. $\lim _{x \rightarrow 3^{-}} f(x)=?$

$$
x \rightarrow 3^{-}
$$

c. Find the limits as $x$ approaches 3 from the right.

$$
\lim _{x \rightarrow 3^{+}} f(x)=1
$$

d. Is it continuous at $\mathrm{x}=3$ ? If not, why?

No because $\lim _{x \rightarrow 3} f(x)=d n e$
OR
No because of jump discontinuity

Find $f^{\prime}(x)$ by using the definition of the derivative.
\#8) $f(x)=2 x^{2}-5 x+1$

$$
\begin{aligned}
f^{\prime}(x)= & \lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h} \\
= & \lim _{h \rightarrow 0} \frac{\left[2(x+h)^{2}-5(x+h)+1\right]-\left[2 x^{2}-5 x+1\right]}{h} \\
= & \lim _{h \rightarrow 0} \frac{2\left(x^{2}+2 h x+h^{2}\right)-5 x-5 h+1-2 x^{2}+10 x-1}{h} \\
= & \lim _{h \rightarrow 0} \frac{2 x^{2}+4 h x+2 h^{2}-5 x-5 h+1-2 x^{2}+70 x-x}{h} \\
= & \lim _{h \rightarrow 0} \frac{4 h x+2 h^{2}-5 h}{h} \\
= & \lim _{h \rightarrow 0} \frac{h(4 x+2 h-5)}{h} \\
= & \lim _{h \rightarrow 0} \\
& (4 x+2 h-5) \\
= & 4 x+2(0)-5 \\
f^{\prime}(x)= & 4 x-5
\end{aligned}
$$

\#9) $f(x)=-3 x+5$

$$
\begin{aligned}
f^{\prime}(x) & =\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h} \\
& =\lim _{h \rightarrow 0} \frac{(-3(x+h)+5]-[-3 x+5]}{h} \\
= & \lim _{h \rightarrow 0} \frac{-3 x-3 h+5+3 x-5}{h} \\
= & \lim _{h \rightarrow 0} \frac{-3 h}{h} \\
= & \lim _{h \rightarrow 0}-3 \\
f(x)= & -3
\end{aligned}
$$

## Limits \& Continuity

## Chapter 1 Review II <br> OPTIONAL

Find $\frac{d}{d x} f(x)$ by using the definition of the derivative.
\#10) $f(x)=\frac{1}{2 x}$

$$
\begin{aligned}
f^{\prime}(x) & =\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h} \\
& =\lim _{h \rightarrow 0} \frac{\frac{1}{2(x+h)}-\frac{1}{2 x}}{h} \\
& =\lim _{h \rightarrow 0} \frac{\frac{x}{2(x+h) x}-\frac{(x+h)}{2 x(x+h)}}{h} \\
& =\lim _{h \rightarrow 0} \frac{\frac{x-x-h}{2 x(x+h)}}{h} \frac{1}{h} \frac{1}{h} \\
& =\lim _{h \rightarrow 0} \frac{\frac{-h}{2 x(x+h)} \cdot \frac{1}{h}}{} \\
& =\lim _{h \rightarrow 0} \frac{-1}{2 x(x+h)} \\
& =\frac{-1}{2 x(x+(0))} \\
& =\frac{-1}{2 x(x)} \\
f^{\prime}(x) & =\frac{-1}{2 x^{2}}
\end{aligned}
$$

\#11) Find the equation for the tangent line to the curve $f(x)=2 x^{2}-5 x+1$ at $x=2$. Write your equation in slope-intercept form. (Use a graphing calculator to graph the curve with the tangent line to verify your answer.)
Point (ix $x=2$

\#12) Find the equation for the tangent line to the curve $f(x)=3 x^{2}-8 x+7$ at $x=3$. Write your equation in slope-intercept form. (Use a graphing calculator to graph the curve with the tangent line to verify your answer.)


## Limits \& Continuity

## Chapter 1 Review II <br> OPTIONAL

Given the graph of a function, sketch in the graph of its derivative function.
\#13)

\#14)

\#15) Often times, problems will ask for the derivative without using the word "derivative". We have learned two interpretations of a derivative. What are these two interpretations?

Derivative means the slope of a tangent line.
Derivative means the instantaneous rate of change.
\#16) $\lim _{x \rightarrow 5}\left(x^{2}+1\right)=26$ is read as $x$ approaches 5 of $x^{2}+1$ is equal to 26 . Use sentences and graphs to illustrate the meaning of said statement.

$c$ loser to 5 from the
left, y gets closer and

$$
\text { closer to } 26 .
$$

(2) As $\times$ approaches 5 form theright
$y$ approaches 26 .
\#17) Give 2 specific scenarios of when a limit would not exist and explain why. You may use graphs to illustrate your point.

$$
\begin{aligned}
& \text { Scenario \#1: } \\
& \text { The limit would not exist at } x=5 \text {. } \\
& \text { As } x \rightarrow 5^{-} \text {the limit is } 4 \text {. } \\
& \text { As } x \rightarrow 5^{+} \text {the limit is } 2 \text {. }
\end{aligned}
$$

The two -sided limit does not exist becank the left and right limits do not agree

Scenario \#2:


The limit does not exist © $x=10$.
As $x \rightarrow 10$ from the left or the right,
the $y$-value approaches infinity.
For a limit to exist, it must
approach a single number.
( $\infty$ is not a number)

