Limits & Continuity 1.2 – Limits by Substitution

Some limits can be found by direct substitution, while others cannot. The "Rules for Limits" exist to help in determining which limits can be found by substitution.

Rules for Limits

For any constants *a* and *c*, and any positive integer n: 1. $\lim_{x\to c} a = a$

- 2. $\lim_{x \to c} x^n = c^n$
- 3. $\lim_{x \to c} \sqrt[n]{x} = \sqrt[n]{c} \ (c > 0 \text{ if } n \text{ is even})$
- 4. If $\lim_{x \to c} f(x)$ and $\lim_{x \to c} g(x)$ both exist, then

a. $\lim_{x \to c} [f(x) + g(x)] = \lim_{x \to c} f(x) + \lim_{x \to c} g(x)$

b.
$$\lim_{x \to c} [f(x) - g(x)] = \lim_{x \to c} f(x) - \lim_{x \to c} g(x)$$

c.
$$\lim_{x \to c} [f(x) \cdot g(x)] = \lim_{x \to c} f(x) \cdot \lim_{x \to c} g(x)$$

d.
$$\lim_{x \to c} \frac{f(x)}{g(x)} = \frac{\lim_{x \to c} f(x)}{\lim_{x \to c} g(x)} \quad if \ \lim_{x \to c} g(x) \neq 0$$

Summary of Rules of Limits

For functions composed of additions, subtractions, multiplications, divisions, powers, and roots, limits may be evaluated by direct substitution, provided that the resulting expression is defined.

$$\lim_{x\to c} f(x) = f(c)$$

Ex A: Finding Limits by Direct Substitution #1) Find $\lim \sqrt{x}$.

) Find
$$\lim_{x \to 4} \sqrt{x}$$
.
Sin sub
into
sim
 $\chi_{\rightarrow 4}$
 $\chi_{\rightarrow 4}$
Sin sub
into
sim
As
you
is d
this
sim
way
eva
lim

Simply substitute c into x and simplify. As long as your answer is defined, this is the simplest way to evaluate a limit.

#2) Find
$$\lim_{x \to 6} \frac{x^2}{x+3}$$
.

$$\int_{x+3}^{x} \frac{x^{2}}{x+3} = \frac{(G)^{2}}{(G)+3}$$
$$= \frac{3G}{9}$$
$$\int_{x+3}^{x} \frac{x^{2}}{x+3} = 4$$

#3) Find
$$\lim_{x \to 3} (2x^2 - 4x + 1)$$
.
 $\lim_{x \to 3} (3x^2 - 4x + 1) = 2(3)^2 - 4(3) + 1$
 $= 2(3)^2 - 4(3) + 1$
 $= 2(3)^2 - 4(3) + 1$
 $= 2(3)^2 - 4(3) + 1$
 $= 2(3)^2 - 4(3) + 1$
 $= 2(3)^2 - 4(3) + 1$
 $= 2(3)^2 - 4(3) + 1$
 $= 2(3)^2 - 4(3) + 1$
 $= 2(3)^2 - 4(3) + 1$
 $= 2(3)^2 - 4(3) + 1$
 $= 2(3)^2 - 4(3) + 1$
 $= 2(3)^2 - 4(3) + 1$
 $= 2(3)^2 - 4(3) + 1$
 $= 2(3)^2 - 4(3) + 1$
 $= 2(3)^2 - 4(3) + 1$
 $= 2(3)^2 - 4(3) + 1$
 $= 2(3)^2 - 4(3) + 1$
 $= 2(3)^2 - 4(3) + 1$
 $= 2(3)^2 - 4(3) + 1$
 $= 2(3)^2 - 4(3) + 1$
 $= 2(3)^2 - 4(3) + 1$
 $= 2(3)^2 - 4(3) + 1$
 $= 2(3)^2 - 4(3) + 1$
 $= 2(3)^2 - 4(3) + 1$
 $= 2(3)^2 - 4(3) + 1$
 $= 2(3)^2 - 4(3) + 1$
 $= 2(3)^2 - 4(3) + 1$
 $= 2(3)^2 - 4(3) + 1$
 $= 2(3)^2 - 4(3) + 1$
 $= 2(3)^2 - 4(3) + 1$
 $= 2(3)^2 - 4(3) + 1$
 $= 2(3)^2 - 4(3) + 1$
 $= 2(3)^2 - 4(3) + 1$
 $= 2(3)^2 - 4(3) + 1$
 $= 2(3)^2 - 4(3) + 1$
 $= 2(3)^2 - 4(3) + 1$
 $= 2(3)^2 - 4(3) + 1$
 $= 2(3)^2 - 4(3) + 1$
 $= 2(3)^2 - 4(3) + 1$
 $= 2(3)^2 - 4(3) + 1$
 $= 2(3)^2 - 4(3) + 1$
 $= 2(3)^2 - 4(3) + 1$
 $= 2(3)^2 - 4(3) + 1$
 $= 2(3)^2 - 4(3) + 1$
 $= 2(3)^2 - 4(3) + 1$
 $= 2(3)^2 - 4(3) + 1$
 $= 2(3)^2 - 4(3) + 1$
 $= 2(3)^2 - 4(3) + 1$
 $= 2(3)^2 - 4(3) + 1$
 $= 2(3)^2 - 4(3) + 1$
 $= 2(3)^2 - 4(3) + 1$
 $= 2(3)^2 - 4(3) + 1$
 $= 2(3)^2 - 4(3) + 1$
 $= 2(3)^2 - 4(3) + 1$
 $= 2(3)^2 - 4(3) + 1$
 $= 2(3)^2 - 4(3) + 1$
 $= 2(3)^2 - 4(3) + 1$
 $= 2(3)^2 - 4(3) + 1$
 $= 2(3)^2 - 4(3) + 1$
 $= 2(3)^2 - 4(3) + 1$
 $= 2(3)^2 - 4(3) + 1$
 $= 2(3)^2 - 4(3) + 1$
 $= 2(3)^2 - 4(3) + 1$
 $= 2(3)^2 - 4(3) + 1$
 $= 2(3)^2 - 4(3) + 1$
 $= 2(3)^2 - 4(3) + 1$
 $= 2(3)^2 - 4(3) + 1$
 $= 2(3)^2 - 4(3) + 1$
 $= 2(3)^2 - 4(3) + 1$
 $= 2(3)^2 - 4(3) + 1$
 $= 2(3)^2 - 4(3) + 1$
 $= 2(3)^2 - 4(3) + 1$
 $= 2(3)^2 - 4(3) + 1$
 $= 2(3)^2 - 4(3) + 1$
 $= 2(3)^2 - 4(3) + 1$
 $= 2(3)^2 - 4(3) + 1$
 $= 2(3)^2 - 4(3) + 1$
 $= 2(3)^2 - 4(3) + 1$
 $= 2(3)^2 - 4(3) + 1$
 $= 2(3)^2 - 4(3)^2 - 4(3)^2 + 1$
 $= 2(3)^2 - 4(3)^2 - 4(3)^2 + 1$
 $= 2(3)^2 - 4(3)^2 - 4(3)^2 + 1$
 $= 2(3)^2 - 4(3)^2 - 4(3)^2 + 1$
 $= 2(3)^2 - 4(3)^2 - 4(3)^2$

Limits & Continuity 1.2 – Limits by Substitution

Limits & Continuity 1.2A – Limits by Substitution

Finding each limit by substitution. You may have to simplify first.

#1)
$$\lim_{x \to 9} \sqrt{x+7} = \sqrt{(9)+7}$$

= $\sqrt{16}$
= $\sqrt{2}$

#2)
$$\lim_{x \to 2} (4x^2 - 7x + 1) = 4(2)^2 - 7(2) + 1$$

= 4(4) - 14 + 1
= 16 - 13
= 3

#3)
$$\lim_{x \to 15} \frac{2x^2 - 30x}{x - 15} = \lim_{x \to 15} \frac{2x}{x - 15} = \lim_{x \to 15} \frac{2x}{x - 15} = \lim_{x \to 15} \frac{2x}{x - 15} = 2(15) = 30$$
#4)
$$\lim_{x \to -5} \sqrt{77} = \sqrt{77}$$

#5) $\lim_{x \to 81} [(x - 80)x^{1/2}] = [(9) - 80] (81)^{\frac{1}{2}}$ = [1] · $\sqrt{81}$ = 1 · 9 = (9)

#6)
$$\lim_{h \to 0} (3x^2h - 3xh + 33) = 3x^2 (a) - 3x(a) + 33$$

= (33)

#7)
$$\lim_{h \to 5} \left[\frac{x^2 - 5}{x - 5} + h \right] = \frac{x^2 - 5}{x \cdot 5} + (5)$$
$$= \frac{x^2 - 5}{x \cdot 5} + 5$$

$$#8) \lim_{x \to -5} \frac{x+5}{x^2+7x+10} = \lim_{x \to -5} \frac{x+5}{(x+5)(x+1)}$$
$$= \lim_{x \to -5} \frac{1}{(x+5)(x+1)}$$
$$= \frac{1}{(-5)+2}$$
$$= \frac{1}{(-5)+2}$$
$$= \frac{1}{(-5)+2}$$
$$= \frac{1}{(-5)+2}$$
$$= \frac{1}{(-5)+2}$$
$$= \lim_{x \to 0} \frac{6x-5}{11}$$
$$= \frac{6(0)-5}{11}$$
$$= \frac{-5}{11}$$

#10)
$$\lim_{h \to 0} \frac{3x^{2} - 12xh^{2} + 4h}{h}$$

=
$$\lim_{h \to 0} \frac{h(3x^{2} - 12xh + 4h^{2})}{k}$$

=
$$\lim_{h \to 0} (3x^{2} - 12xh + 4h^{2})$$

=
$$3x^{2} - 12x(0) + 4h^{2}$$

= (3x²)

The Calculus Page 1 of 2

Limits & Continuity 1.2A – Limits by Substitution

Finding each limit by substitution. You may have to simplify first. #11) $\lim_{x\to 9} \sqrt{x} = \sqrt{(9)}$

=3

#12)
$$\lim_{x \to 2} (9x^2 - 8x + 4) = 9(2)^2 - 8(2) + 4$$

= $9(4) - 16 + 4$
= $36 - 12$
= 94

#13)
$$\lim_{x \to 4} \frac{2x^2 - 15}{5x + 1} = \frac{2(u)^4 - i5}{5(u) + 1}$$
$$= \frac{2(i6) - i5}{56 + 1}$$
$$= \frac{32 - i5}{51}$$
$$= \frac{17}{51}$$
$$= \frac{17}{51}$$

#15)
$$\lim_{x \to 16} \left[(x+4)x^{-1/2} \right] = \left[(16) + 4 \right] \left(16 \right)^{\frac{1}{2}}$$
$$= \left[20 \right] \cdot \frac{1}{116}$$
$$= \frac{20}{4}$$
$$= 5$$

#16)
$$\lim_{h \to 0} (9x^2h - 8xh + 4) = 9x^3(0) - 8x(0) + 4$$

=(4)

#17)
$$\lim_{x \to 5} \frac{x^2 - 25}{x - 5} = \lim_{x \to 5} \frac{(x - 5)}{x - 5}$$
$$= \lim_{x \to 5} (x - 5)$$
$$= \lim_{x \to 5} (x - 5)$$
$$= (5) + 5$$
$$= (10)$$

#18)
$$\lim_{x \to -2} \frac{x+2}{x^2+7x+10} = \lim_{x \to -2} \frac{x+2}{(x+2)(x+3)}$$
$$= \lim_{x \to -2} \frac{1}{x+3}$$
$$= \frac{1}{(-1)+5}$$
$$= \frac{1}{3}$$

#19)
$$\lim_{x \to 0} \frac{x^3+x^2-x}{x^2+x} = \lim_{x \to 0} \frac{x}{x(x+1)}$$
$$= \lim_{x \to 0} \frac{x^2+x-1}{x(x+1)}$$
$$= \frac{(-1)^{1}}{(-1)^{1}}$$
$$= \frac{(-1)^{1}}{(-1)^{1}}$$
$$= \frac{(-1)^{1}}{(-1)^{1}}$$
$$= \frac{1}{1}$$
$$= \frac{(-1)^{1}}{(-1)^{1}}$$
$$= \frac{1}{1}$$
$$= \frac{1$$

The Calculus Page 2 of 2