Limits \& Continuity

1.4 - Continuity

Continuity from PreCalculus

A function is said to be continuous at c if its graph passes through the point at $x=c$ without a "hole" or a"jump"
f(c)

Continuous at c

Discontinuous at c

Discontinuous at c

Continuity from Calculus

A function f is continuous at c if the following three conditions hold:

1. $f(c)$ is defined
2. $\lim _{x \rightarrow c} f(x)$ exists
3. $\lim _{x \rightarrow c} f(x)=f(c)$
f is discontinuous at c if one or more of these conditions fails to be true.

Which Functions Are Continuous?

If functions f and g are continuous at c, then the following are also continuous at c :

1. $f \pm g$
2. $a \bullet f \quad$ [for any constant a]
3. $f \bullet g$
4. f / g
[if $g(c) \neq 0$]
5. $f(g(x)) \quad[$ for f continuous at $g(c)]$

All polynomial functions are continuous. Rational functions are not continuous when the denominator $=$ 0 (vertical asymptote). Piece-wise functions have the potential to be continuous or not.

Limits \& Continuity
1.4 - Continuity

Ex A: Determine if each function is continuous If discontinuous, state why.
\#1)

\#2)

\#3)

Ex B: Determine if each function is continuous. If discontinuous, state where it is discontinuous and why.
\#1) $\quad f(x)=x^{3}-3 x^{2}-x+3$
\#2) $\quad f(x)=\frac{1}{(x-1)^{2}}$
\#3) $\quad f(x)= \begin{cases}2 x+1 & \text { if } x<2 \\ -2 x+9 & \text { if } x \geq 2\end{cases}$
\#4) $\quad f(x)=\left\{\begin{array}{cc}x^{2}+1 & \text { if } x<4 \\ 5 x-1 & \text { if } x \geq 4\end{array}\right.$

A: Determine whether each function is continuous at c. If discontinuous, state why.

\#2)

\#4)

B: Determine whether each function is continuous.
If discontinuous, state where it is discontinuous.
(You've graphed some of these functions on previous homework.)
\#5) $f(x)=6 x+8$
\#6) $f(x)=\frac{x+2}{x-2}$
\#7) $f(x)=\frac{1}{x^{2}+29 x+28}$
\#8) $f(x)= \begin{cases}x & \text { if } x<0 \\ x-6 & \text { if } x \geq 0\end{cases}$

Limits \& Continuity
 1.4 A - Continuity

B: ...continued
\#9) $f(x)= \begin{cases}2 x+1 & \text { if } x<2 \\ -2 x-1 & \text { if } x \geq 2\end{cases}$
\#10) $f(x)= \begin{cases}\frac{1}{3} x+5 & \text { if } x<9 \\ x-1 & \text { if } x \geq 9\end{cases}$
\#11) $f(x)=\left\{\begin{array}{lr}2 x & \text { if } x<3 \\ -2 x+12 & \text { if } x \geq 3\end{array}\right.$

C: Decide if each statement is true or false. If false give a counterexample. (A counterexample makes the hypothesis true and the conclusion false.)
\#12) If $\lim _{x \rightarrow 5} f(x)=10$, then $\lim _{x \rightarrow 5^{+}} f(x)=10$
\#13) If $\lim _{x \rightarrow 5^{+}} f(x)=10$, then $\lim _{x \rightarrow 5} f(x)=10$
\#14) If $f(1)=7$, then $\lim _{x \rightarrow 1} f(x)=7$
\#15) If $f(-4)$ is not defined, then $\lim _{x \rightarrow-4} f(x)$ does not exist.

