Continuity from PreCalculus

A function is said to be continuous at c if its graph passes through the point at $x=c$ without a "hole" or a "jump"
$\mathrm{f}(\mathrm{c})$

Continuous at c

Discontinuous at c

Discontinuous at c

Continuity from Calculus

A function f is continuous at c if the following three conditions hold:

1. $f(c)$ is defined
2. $\lim _{x \rightarrow c} f(x)$ exists
3. $\lim _{x \rightarrow c} f(x)=f(c)$
f is discontinuous at c if one or more of these conditions fails to be true.

Which Functions Are Continuous?

If functions f and g are continuous at c, then the following are also continuous at c :

1. $f \pm g$
2. $a \bullet f \quad[$ for any constant a]
3. $f \bullet g$
4. $f / g \quad[$ if $g(c) \neq 0]$
5. $f(g(x)) \quad[$ for f continuous at $g(c)]$

All polynomial functions are continuous. Rational functions are not continuous when the denominator $=$ 0 (vertical asymptote). Piece-wise functions have the potential to be continuous or not.

Limits \& Continuity
1.4 - Continuity

Ex A: Determine if each function is continuous.
If discontinuous, state why.
\#1) Continuous

\#2) Discont.ruors. $\lim f(x) \neq f(c)$

\#3)

Disc ont.ruous, $\lim _{x \rightarrow c} f(x)=d n ?$.

Ex B: Determine if each function is continuous. If discontinuous, state where it is discontinuous and why.
\#1) $\quad f(x)=x^{3}-3 x^{2}-x+3$
Continuous
\#2) $\quad f(x)=\frac{1}{(x-1)^{2}}$

$$
\begin{aligned}
& V A \\
& (x-1)^{2}=0 \\
& x-1=0 \\
& x=1
\end{aligned}
$$

Discont.ruars
The $\lim _{x \rightarrow 1} f(x)=d n e$
\#3) $\quad f(x)= \begin{cases}2 x+1 & \text { if } x<2 \\ -2 x+9 & \text { if } x \geq 2\end{cases}$

$$
\begin{aligned}
f(x) & =2 x+1 \\
f(2) & =2(2)+1 \\
& =4+1 \\
f(2) & =5
\end{aligned} \quad\left[\begin{array}{l}
f(x)=-2 x+9 \\
f(2)=-2(2)+9 \\
f(2)=-4+9 \\
f(2)=5 \\
\text { Continuous }
\end{array}\right.
$$

\#4)

$$
\begin{gathered}
f(x)=\left\{\begin{array}{c}
x^{2}+1 \\
5 x-1 \\
5(x)=x^{2}+1 \\
\text { if } x<4 \\
f(x)^{2}=5 x-1
\end{array}\right. \\
\begin{array}{l}
f(4)=(4)^{2}+1 \quad \begin{array}{l}
f(4)=5(4)-1 \\
f(4)=16+1 \\
f(4)=20-1 \\
f(4)=19
\end{array} \\
f(4)=17
\end{array} \\
\text { Discontinnous@x=4} \\
\lim _{x \rightarrow 4} f(x)=\text { ane }
\end{gathered}
$$

A: Determine whether each function is continuous at c. If discontinuous, state why.

B: Determine whether each function is continuous. If discontinuous, state where it is discontinuous.
(You've graphed some of these functions on previous homework.)
\#5) $f(x)=6 x+8$

\#6) $f(x)=\frac{x+2}{x-2}$

$$
\text { Discontinuous (4) } x=2
$$

\#7) $f(x)=\frac{1}{x^{2}+29 x+28}$

Discontinuous
(a)
$x=-28$ and -1
\#8) $f(x)= \begin{cases}x & \text { if } x<0 \\ x-6 & \text { if } x \geq 0\end{cases}$

Limits \& Continuity

1.4 A - Continuity

B: ...continued
\#9) $f(x)= \begin{cases}2 x+1 & \text { if } x<2 \\ -2 x-1 & \text { if } x \geq 2\end{cases}$

$$
\begin{aligned}
f(x) & =-2 x-1 \\
f(2) & =-2(2)-1 \\
& =-4-1 \\
f(2) & =-5
\end{aligned}
$$

Discontinuous (2) $x=2$

\#10) $f(x)= \begin{cases}\frac{1}{3} x+5 & \text { if } x<9 \\ x-1 & \text { if } x \geq 9\end{cases}$

\#11) $f(x)= \begin{cases}2 x & \text { if } x<3 \\ -2 x+12 & \text { if } x \geq 3\end{cases}$

C: Decide if each statement is true or false. If false give a counterexample. (A counterexample makes the hypothesis true and the conclusion false.)
\#12) If $\lim _{x \rightarrow 5} f(x)=10$, then $\lim _{x \rightarrow 5^{+}} f(x)=10$
\#13) If $\lim _{x \rightarrow 5^{+}} f(x)=10$, then $\lim _{x \rightarrow 5} f(x)=10$
False Counterexample
\#14) If $f(1)=7$, then $\lim _{x \rightarrow 1} f(x)=7$

FALSE

\#15) If $f(-4)$ is not defined, then $\lim _{x \rightarrow-4} f(x)$ does not exist.
False

Counter example

