Basic Derivative Rules

2.3 - Product Rule

Product Rule

Newton's Notation

$$
(f \cdot g)^{\prime}=f^{\prime} \cdot g+f \cdot g^{\prime}
$$

Ex A: Use the Product Rule and Newton's Notation to find the derivative of each product.
\#1) $x^{4} \cdot x^{6}$
\#2) $y=\left(x^{3}-x^{2}+7\right)\left(x^{4}+3\right)$

Product Rule

Leibniz's Notation

$$
\frac{d}{d x}(f \cdot g)=\left(\frac{d}{d x} f\right) \cdot g+f \cdot\left(\frac{d}{d x} g\right)
$$

Ex B: Use the Product Rule and Leibniz's Notation to find the derivative of each product.
\#1) $x^{4}\left(4 x^{7}-3 x^{2}+12\right)$
\#2) $y=\frac{15 x+1}{x^{3}}$

Basic Derivative Rules

2.3 - Product Rule

Ex C: Answer the following word problems.

PS4 sales

\#1) After selling PS4s for t weeks, the total sales are $S(t)=t^{3}\left(16-t^{2}\right)$ thousand PS4s for the first 3 weeks of sales. Find the rate of change after week 2.

Weeds

\#2) After pulling weeds for t days, the total number of weeds in a flower garden can be represented by $W(t)=\left(t^{2}+1\right)\left(t^{3}-1\right)$ weeds. Find the rate of change after 8 days.

