Basic Derivative Rules

2.4 - Quotient Rule

Quotient Rule

Newton's Notation

$$
\left(\frac{f}{g}\right)^{\prime}=\frac{f^{\prime} \cdot g-f \cdot g^{\prime}}{g^{2}}
$$

Ex A: Use the Quotient Rule and Newton's Notation.
\#1) $\left(\frac{x^{10}}{x^{4}}\right)^{\prime}$
\#2) If $y=\frac{x^{3}}{x^{2}-4}$, then find y^{\prime}.

Quotient Rule

Leibniz's Notation

$$
\frac{d}{d x}\left(\frac{f}{g}\right)=\frac{\frac{d}{d x}(f) \cdot g-f \cdot \frac{d}{d x}(g)}{(g)^{2}}
$$

Ex B: Use the Quotient Rule and Leibniz's Notation.
\#1) If $y=\left(\frac{x^{5}-2}{x^{3}-1}\right)$, then find $\frac{d y}{d x}$.
\#2) $\frac{d}{d x}\left(\frac{x^{3}+x}{x^{3}-1}\right)$

Basic Derivative Rules

2.4 - Quotient Rule

Ex C: Answer the following word problems.

Drinking Water

Gnadenhutten must purify its drinking water. If the cost of purifying a gallon of water to a purity of x percent is $C(x)=\frac{2}{100-x}$ dollars for $80<\mathrm{x}<100$, find the rate of change of the purification costs when the purity is 92% and 98% and interpret your answer.

