Basic Derivative Rules

2.5A – Differentiating
$$e^{f(x)}$$
 and $\ln f(x)$

A: Find the derivative of each function.

#1)
 $f(x) = (x^2 + x)\ln(x)$

#5)
 $f(x) = \frac{\ln(x)}{x}$

#2)
 $f(x) = \ln(\sqrt{x})$

#6)
 $f(x) = e^x$

#3)
 $f(x) = \ln(x^3)$

#4)
 $f(x) = x \ln(x)$

#8)
 $f(x) = e^{-x}$

Basic Derivative Rules

2.5A - Differentiating
$$e^{f(x)}$$
 and $\ln f(x)$

#9)
 $f(x) = e^{\ln(x)}$

#13)
 $f(x) = \frac{x}{\ln(x)}$

#10)
 $f(x) = \ln(e^{x^2})$

#14)
 $f(x) = e^{21}$

#11)
 $f(x) = x^x$

#12)
 $f(x) = ex$

#16)
 $f(x) = e \ln(x)$

Basic Derivative Rules

2.5A - Differentiating
$$e^{f(x)}$$
 and $\ln f(x)$

B: Evaluate each derivative

#17) $f(x) = x^3 \ln(x)$, find $f'(e)$

#19) $f(x) = x^2 \ln(x) - x$, find $f'(1)$

#18) $\frac{d}{dx} (e^{x^4 + 4})|_{x=1}$

#20) $\frac{d}{dx} (e^{x^5})|_{x=1}$

Basic Derivative Rules 2.5A – Differentiating $e^{f(x)}$ and $\ln f(x)$

Investment

#21) A sum of \$1000 at 5% interest compounded continuously will grow to $V(t) = 1000e^{0.05t}$ dollars in t years. Find the rate of growth after:

- a. 0 years
- b. 10 years

Candle Sticks

#23) If $D(p) = 1000e^{-0.01p}$ is the consumer demand for George's homemade candle sticks (which he advertises as "imported from the best Italian ears") and p is the selling price in dollars, find D'(100) and interpret your answer.

Depreciation

#22) A \$30,000 automobile depreciates so that its value after t years is $V(t) = 30,000e^{-0.35t}$ dollars. Find the rate of change of its value ...

- a. when it is brand spanking new
- b. after 2 years

Forever Burning Matches ®

#24) If $D(p) = 4000e^{-0.02p}$ is the consumer demand for George's Forever Burning Matches \mathbb{R} and *p* is the selling price in dollars, find D'(50) and interpret your answer.