Derivative Applications
 3.5 - Interpretations

\#1)
$F(x)=$ the temperature of oil at time x $x=$ time in hours

Interpret $\mathrm{F}^{\prime}(5)=12$
\#2)
$\mathrm{P}(\mathrm{x})=$ population of a town after x weeks $x=$ number of weeks

Interpret P '(13) $=120$
\#3)
$G(x)=$ number of words a person can memorize in x minutes
$\mathrm{x}=$ number of minutes
Interpret $G^{\prime}(14)=5$
\#4)
$h(x)=$ the number of cars sold on day x of advertising $x=$ number of days of advertising

Interpret h' $(7)=13$
\#5)
$B(x)=$ the number of bacteria in a culture x hours after patient was given an antibiotic $x=$ number of hours

Interpret $B^{\prime}(5)=-100,000$
\#6)
$P(x)=$ total profit from selling x computer chips $x=$ number of computer chips
$\mathrm{AP}(\mathrm{x})=$ average profit per unit $A C(x)=$ average cost per unit

Interpret $P^{\prime}(70)=50$

Interpret MAP(70) $=4$

Interpret $\operatorname{MAC}(70)=-0.25$

Derivative Applications
 3.5 - Interpretations

\#7)
$\mathrm{H}(\mathrm{x})=$ amount of sulfur dioxide pollution measured in parts per minute
$\mathrm{x}=$ miles downwind from the plant
Interpret $\mathrm{H}^{\prime}(2)=-2000$
\#8)
$\mathrm{A}(\mathrm{t})=$ cross sectional area, measured in square centimeters, of a blood vessel t hours after a nitroglycerine is administered
$t=$ hours after nitroglycerine is administered

$$
\text { Interpret } A^{\prime}(4)=.10
$$

\#9)

$\mathrm{W}(\mathrm{t})=$ weight of a typical hailstone (in ounces) that remains in a cloud for t minutes
$\mathrm{t}=$ the number of minutes hailstone is in cloud
Interpret $W^{\prime}(2)=3$
\#10)
$\mathrm{P}(\mathrm{t})=$ the number of phrases a student can memorize in t hours
$t=$ number of hours

$$
P^{\prime}(4)=12
$$

\#11)
$\mathrm{P}(\mathrm{n})=$ total profit from selling n X-Box 360s. $\mathrm{n}=$ number of X -Box 360s
$\mathrm{AP}(\mathrm{n})=$ average profit per unit
$\mathrm{AC}(\mathrm{n})=$ average cost per unit
Interpret $P^{\prime}(700)=100$

Interpret MAP $(700)=12.50$

Interpret MAC(700) $=-2.22$

