Advanced Derivative Rules 4.1 – The Chain Rule

The Chain Rule

If *h* and *k* are functions of *x*, then $\left[h(k(x)) \right]' = h'(k(x)) \cdot k'(x)$

#1)
$$f(x) = (x^2 - 4x + 1)^5$$

Prologue

In order to use the Chain Rule, we must first have a composite function. That is, we must have a function inside a function. Let's review how to compose two functions and then how to decompose two functions.

Compose the functions by finding h(k(x)). #1) $h(x) = x^3$ k(x) = x + 1

#2) $h(x) = x^2$ $k(x) = \frac{1}{x}$

Decompose the functions by finding functions h(x) and k(x) such that the following expression is the composition h(k(x)).

#1) $(x^3 + 9)^{10}$

#2) $\sqrt{x^3 + x^2 - 1}$

#2) $y = (x^4 + x^2 + 8)^6$

#3) $g(x) = (5x^2 + x)^{10}$

 $#4) \quad y = \left(\frac{1}{x^2 - 1}\right)^3$

#5) $h(x) = \sqrt{x^2 - 10x + 5}$

Advanced Derivative Rules 4.1 – The Chain Rule

Giant Ball of Oil

A giant ball of oil was dropped from the 10th floor of Kramerica Industries. Upon impacting the ground, the oil began to expand on the ground in a circular fashion. After *t* days of impacting the ground, the radius of the oil slick is $r(t) = \sqrt{8t + 1}$ feet. How fast is the radius of the oil slick expanding after 1 day?