#1) If $f(x) = (5x^2 + 3x - 1)(x^2 + 2x - 1)$, find the first derivative.

$$f'(x) = (5x^{2} + 3x - 1)(x^{2} + 3x - 1) + (5x^{2} + 3x - 1)(x^{2} + 3x - 1$$

#2) If
$$f(x) = \frac{x^2}{x-1}$$
, find the first derivative.

$$f'(x) = \frac{x'(x-1) - x(x-1)'}{(x-1)^2}$$

$$f'(x) = \frac{(1)(x-1) - x(1)}{(x-1)^2}$$

$$f'(x) = \frac{x-1-x}{(x-1)^2}$$

$$f'(x) = \frac{x-1-x}{(x-1)^2}$$

$$f''(x) = \frac{(-1)'(x-1)^2 - (-1)(x^2 - 3x + 1)'}{[(x-1)^2]^2}$$

$$= \frac{o(x-1)^2 + 1(3x-2)}{(x-1)^4}$$

$$= \frac{o(x-1)^2 + 1(3x-2)}{(x-1)^4}$$

$$= \frac{o(x-1)^2}{(x-1)^4}$$

$$= \frac{o(x-1)}{(x-1)^4}$$

#3)
$$\frac{d^2}{dr^2} (\pi r^5)|_{r=3}$$
 (write your answer in terms of π)
 $\frac{d}{dr} (\pi r^5) = 5\pi r^4$
 $\frac{d^2}{dr} (\pi r^5) = 30\pi r^3$
 $\frac{d^2}{dr} (\pi r^5)|_{r=3} = 30\pi r(3)^3$
 $= 30\pi r(3)^3$
 $\frac{d^2}{dr^2} (\pi r^5)|_{r=3} = 540\pi$

#4) If
$$f(r) = r^{5} + r^{4}$$
 find $f''(1)$
 $f'(r) = Sr'' + 4r^{3}$
 $f''(r) = 20r^{3} + r^{3}r^{2}$
 $f''(r) = 20(r)^{3} + r^{3}(r)^{2}$
 $= 20(r) + r^{3}(r)^{2}$

The Calculus Page 1 of 4

Lint 4 U

#5) Lint 4 U specializes in selling lint to customers whose pockets are unable to produce their own lint. Lint 4 U's profit function is $P(x) = 20x^2 - 12\sqrt[3]{x}$ dollars, where x is the daily sales of lint.

a. Find the marginal profit function. $\rho(x) = \partial x^2 - i \partial x^3$

 $MP(x) = 40x - 4x^{-4/3}$ $MP(x) = 40x - \frac{4}{3x^{2}}$

b. Find the marginal profit when 8 lints have been sold.

$$MP(8) = 40(8) - \frac{4}{(8)^{2}}$$

$$= 320 - \frac{4}{(8)^{2}}$$

$$= 320 - \frac{4}{4}$$

$$= 320 - 1$$

$$MP(8) = \frac{4}{3}19/1000$$

c. Interpret your previous answer

Toe Jam Removal

#6) Jenny is starting a business cleaning toe jam out of the crevices of dirty people's toes. Jenny's company has a cost of \$1 for each jam cleared with fixed costs \$5 per week.

a. Find the cost function.

$$C(x) = {}^{*}|x + 5$$

b. Find the average cost function.

$$AC(x) = \frac{C(x)}{x}$$
$$= \frac{x+5}{x}$$
$$AC(x) = 1+5x^{-1}$$

c. Find the marginal average cost function.

$$MAC(x) = -5x^{-2}$$

$$MAC(x) = \frac{-5}{x^{2}}$$

d. Evaluate MAC(x) at x = 10

$$MAC(10) = \frac{-5}{(10)^2}$$

= $\frac{-5}{100}$
 $MAC(10) = -\frac{5}{100} pr 5 Ar$

e. Interpret your previous answer

when 10 toe joms have been cleaned, the average cast per cleaning is decreasing by 5¢ per jam

Gun Shot

#7) If a bullet from a gun is fired vertically up from the ground, its height t seconds after it is fired will be s(t) = $-16t^{2} + 1280t$ feet (neglecting regard for human life, of course.)

How long will it take for the bullet to reach the a. ground? Write your answer as a sentence. () = -16t" + 12B0t

> 0 = -16t(t - 80)o= -16t) o= E-80 o= t) 80= t

b. Find the impact velocity of the bullet hitting the

v/+1=-32+

V(80)= -32(80

V(10=-1280.

It will take 80 seconds to hit the grand.

Route 66

#8) After driving on Route 66 for t hours Elvis is s(t) = $15t^2 - 2t^3$ miles due west of his starting point. (for 0 < t < 9).

a. Find his velocity at 8 hours

 $v(8) = 30(8) - 4(8)^{2}$ = 240 - 6(64) - 240 - 384 V(8) = 7144 mi/hr

b. Interpret your previous answer as it relates to distance.

At 8 hours Elvis' velocity is , 44 miles per hour east.

c. Find his acceleration at 8 hours.

ground. Write your answer as a sentence.

$$\sqrt{(t)} = -32t + 1280$$

 $\sqrt{(50)} = -32(50) + 1280$
 $= -2560 + 1280$
 $\sqrt{(50)} = -1280 + 1280$

Eighty seconds after the bullet is fired, its impact velocity with the ground is 1280 feet per second and is headed down.

$$a(t) = 30 - 10t$$

 $a(8) = 30 - 10(8)$
 $= 30 - 96$
 $a(8) = -66 \text{ m}:/\text{hr}^3$

d. Interpret your previous answer as it relates to velocity.

At 8 nours, Elvis velocity is decreasing by 66 miles

Water

#9) Water is thrown up vertically in the air to a height of $s(t) = 64t - 16t^2$ feet at t seconds.

a. Find the water's distance at 1 second $S(1) = 64(1) - 16(1)^{2}$ = 64 - 16(1) = 64 - 16 S(1) = 48 feet b. Interpret your previous answer.

One second after the water is thrown Into the air, its height is 48 feet

c. Find the water's velocity at 1 second

V(t) = 64 - 32t V(1) = 64 - 32(1) V(1) = 64 - 32 $V(1) = 32 \frac{3}{500}$

d. Interpret your previous answer *as it relates to distance.*

One second after the water is thrown into the air, its velocity is 32 feet for second going 4P.

e. Find the water's acceleration at 1 second

- a(t)= -32 a(1)= -32
- f. Interpret your previous answer *as it relates to velocity*.

One second offer the water is thrown into the air, its velocity is decreesing by 32 feet for second each second.

Mile High Flush

#10) The contents of a toilet flushed from an airplane will fall a distance of $s(t) = 16t^2$ feet (neglecting decency, of course), where t is the time in seconds after the toilet has been flushed.

a. If it takes 5 seconds to hit the ground, find the impact velocity

v(t) = 32t v(s) = 32(s)v(s) = 160 ft/sec

b. Write a sentence for your previous answer.

```
Fire seconds after the toilet is flushed,
the velocity of its contents is
160 feet per second traveling down.
```

c. Find the velocity at 2 seconds

v(2) = 3212v(2) = 64ft/sec

d. Write a sentence for your previous answer *as it relates to distance.*

Two seconds after the toilet is flushed, the velocity of its contents is 64 feet per second traveling down.