\#1) If $f(x)=\left(5 x^{2}+3 x-1\right)\left(x^{2}+2 x-1\right)$, find the first derivative.

$$
\begin{aligned}
f^{\prime}(x) & =\left(5 x^{2}+3 x-1\right)^{\prime}\left(x^{2}+2 x-1\right)+\left(5 x^{2}+3 x-1\right)\left(x^{2}+2 x-1\right)^{\prime} \\
& =(10 x-3)\left(x^{2}+2 x-1\right)+\left(5 x^{2}+3 x-1\right)(2 x+2)
\end{aligned}
$$

\#2) If $f(x)=\frac{x^{2}}{x-1}$, find the first derivative.

$$
\begin{aligned}
f^{\prime}(x) & =\frac{x^{\prime}(x-1)-x(x-1)^{\prime}}{(x-1)^{2}} \\
f^{\prime}(x) & =\frac{(1)(x-1)-x(1)}{(x-1)^{2}} \\
f^{\prime}(x) & =\frac{x-1-x}{(x-1)^{2}} \\
f^{\prime}(x) & =\frac{-1}{(x-1)^{2}} \\
f^{\prime \prime \prime}(x) & =\frac{(-1)^{\prime}(x-1)^{2}-(-1)\left(x^{2}-2 x+1\right)^{\prime}}{\left[(x-1)^{2}\right]^{2}} \\
& =\frac{0(x-1)^{2}+1(2 x-2)}{(x-1)^{4}} \\
& =\frac{0+2 x-2}{(x-1)^{4}} \\
& =\frac{\partial(x-1)}{(x-1)^{4}} \\
f^{\prime \prime}(x) & =\frac{2}{(x-1)^{3}}
\end{aligned}
$$

\#3) $\left.\frac{d^{2}}{d r^{2}}\left(\pi r^{5}\right)\right|_{r=3}$ (write your answer in terms of $\left.\pi\right)$

$$
\begin{aligned}
& \frac{d}{d r}\left(\pi r^{5}\right)=5 \pi r^{4} \\
& \frac{d^{2}}{d r^{2}}\left(\pi r^{5}\right)=20 \pi r^{3} \\
& \left.\frac{d^{2}}{d r^{2}}\left(\pi r^{5}\right)\right|_{r=3}=20 \pi(3)^{3} \\
& =20 \pi(29) \\
& \left.\frac{d^{2}}{d r^{2}}\left(\pi r^{5}\right)\right|_{r=3}=540 \pi
\end{aligned}
$$

\#4) If $f(r)=r^{5}+r^{4}$ find $f^{\prime \prime}(1)_{3}$

$$
\begin{aligned}
& f(r)=r^{3}+r^{4} \text { find } f^{\prime \prime}(1) \\
& f^{\prime}(r)=5 r^{4}+4 r^{3}
\end{aligned}
$$

$$
f^{\prime \prime}(r)=20 r^{3}+12 r^{2}
$$

$$
f^{\prime \prime}(1)=20(1)^{3}+12(1)^{2}
$$

$$
=20(1)+12(1)
$$

$$
=20+12
$$

$$
f^{\prime \prime}(1)=32
$$

Derivative Applications
Exam Review 3

Lint 4 U
\#5) Lint 4 U specializes in selling lint to customers whose pockets are unable to produce their own lint. Lint 4 U's profit function is $P(x)=20 x^{2}-12 \sqrt[3]{x}$ dollars, where x is the daily sales of lint.
$-12 x^{\frac{1}{3}}$
a. Find the marginal profit function.

$$
P(x)=20 x^{2}-12 x^{3}
$$

$$
M P(x)=40 x-4 x^{-2 / 3}
$$

$$
M P(x)=40 x-\frac{4}{\sqrt[3]{x^{2}}}
$$

b. Find the marginal profit when 8 lints have been sold.

$$
\begin{aligned}
M P(8) & =4 O(8)-\frac{4}{(\sqrt[3]{8})^{2}} \\
& =320-\frac{4}{(2)^{2}} \\
& =320-\frac{4}{4} \\
& =320-1 \\
M P(8) & =319 / 1 \text { int }
\end{aligned}
$$

c. Interpret your previous answer

When 8 liars hove be sold, the total profit is increasing by $\$ 319$ per lint sold.
or
When 8 fiats have be sold, the profit for the next lint sold is $\$ 319$

Toe Jam Removal
\#6) Jenny is starting a business cleaning toe jam out of the crevices of dirty people's toes. Jenny's company has a cost of $\$ 1$ for each jam cleared with fixed costs $\$ 5$ per week.
a. Find the cost function.

$$
C(x)=\$ 1 x+5
$$

b. Find the average cost function.

$$
\begin{aligned}
A C(x) & =\frac{c(x)}{x} \\
& =\frac{x+5}{x} \\
A C(x) & =1+S x^{-1}
\end{aligned}
$$

c. Find the marginal average cost function.

$$
\begin{aligned}
& \text { MAC }(x)=-5 x^{-2} \\
& M A C(x)=\frac{-5}{x^{2}}
\end{aligned}
$$

d. Evaluate $M A C(x)$ at $x=10$

$$
\begin{aligned}
\text { MAC }(10) & =\frac{-5}{(10)^{2}} \\
& =\frac{-5}{100} \\
\text { MAC (10) } & =-.05 \text { per } 5 \mathrm{Am}
\end{aligned}
$$

e. Interpret your previous answer when 10 toe jams have been cleaned, the average cost per cleaning is decreasing by 54 per jam

Gun Shot

\#7) If a bullet from a gun is fired vertically up from the ground, its height t seconds after it is fired will be $s(t)=$ $-16 t^{2}+1280 t$ feet (neglecting regard for human life, of course.)
a. How long will it take for the bullet to reach the ground? Write your answer as a sentence.

$$
\begin{aligned}
& 0=-16 t^{2}+1280 t \\
& 0=-16 t(t-80) \\
& 0=-16 t \quad\left\{\begin{array}{l}
0=t-80 \\
80=t
\end{array}\right.
\end{aligned}
$$

It will take 80 seconds to hit the grand.

b. Find the impact velocity of the bullet hitting the ground. Write your answer as a sentence.

$$
\begin{aligned}
v(t) & =-32 t+1280 \\
v(80) & =-32(80)+1280 \\
& =-2560+1280 \\
v(80 & =-1280 \mathrm{f} / \mathrm{sex}
\end{aligned}
$$

Eighty seconds after the bullet
is fired, its impact velocity with the ground is 1280 feet per seed and is headed down.

Route 66

\#8) After driving on Route 66 for t hours Elvis is $s(t)=$ $15 t^{2}-2 t^{3}$ miles due west of his starting point. (for $0<t<9$).
a. Find his velocity at 8 hours

$$
\begin{aligned}
v(8) & =30(8)-6(8)^{2} \\
& =240-6(64) \\
& =240-384 \\
v(8) & =-144 \mathrm{~m} / \mathrm{hr}
\end{aligned}
$$

b. Interpret your previous answer as it relates to distance.

At 8 hours ε luis velocity is 1 $4 / 4$ miles fer hour east.

c. Find his acceleration at 8 hours.

$$
\begin{aligned}
a(t) & =30-12 t \\
a(8) & =30-12(8) \\
& =30-96 \\
a(8) & =-66 \mathrm{~m} / / \mathrm{hr}^{2}
\end{aligned}
$$

d. Interpret your previous answer as it relates to velocity.
At 8 nous, ε luis' velocity is decreasing by 66 miles

Derivative Applications
Exam Review 3

Water
\#9) Water is thrown up vertically in the air to a height of $s(t)=64 t-16 t^{2}$ feet at t seconds.
a. Find the water's distance at 1 second

$$
\begin{aligned}
& \text { ind the water's distance at } 1 \text { second } \\
& \begin{aligned}
S(1) & =64(1)-16(1)^{2} \\
& =64-16(1) \\
& =64-66 \\
S(1) & =48 \text { feet }
\end{aligned}
\end{aligned}
$$

b. Interpret your previous answer.

One second after the water is throw into the dir, its height is 48 feet.
c. Find the water's velocity at 1 second

$$
\begin{aligned}
& v(t)=64-32 t \\
& v(1)=64-32(1) \\
& v(1)=64-32 \\
& v(1)=32 \mathrm{ft} / \mathrm{sec}
\end{aligned}
$$

d. Interpret your previous answer as it relates to distance.

One second after the water is throw into the air, its velocity is 32 feet per second going 4P.
e. Find the water's acceleration at 1 second

$$
\begin{aligned}
& a(t)=-32 \\
& a(1)=-32
\end{aligned}
$$

f. Interpret your previous answer as it relates to velocity.

One second after the water is thrum into the air, its velocity is decreasing by 33 feet per second each second.

Mile High Flush
\#10) The contents of a toilet flushed from an airplane will fall a distance of $s(t)=16 t^{2}$ feet (neglecting decency, of course), where t is the time in seconds after the toilet has been flushed.
a. If it takes 5 seconds to hit the ground, find the impact velocity

$$
\begin{aligned}
& v(t)=32 t \\
& v(5)=32(5) \\
& v(5)=160 \mathrm{ft} / \mathrm{sec}
\end{aligned}
$$

b. Write a sentence for your previous answer.

Fire seconds after the toilet is flushed, the velocity of its contents is 160 feet per second traveling dawn.
c. Find the velocity at 2 seconds

$$
\begin{aligned}
& v(0)=32(2) \\
& v(2)=64 \mathrm{ft} / \mathrm{sec}
\end{aligned}
$$

d. Write a sentence for your previous answer as it relates to distance.
Two seconds after the toilet is flushed, the velocity of its contents is 64 feet per second traveling donn.

