Derivatives \& Their Uses
Exam Review 4
\#1) If $h(x)=\left(8 x^{7}-9 x+2\right)^{8}$, find $h^{\prime}(x)$

$$
\begin{aligned}
h^{\prime}(x) & =8\left(8 x^{7}-9 x+2\right)^{7} \cdot\left(8 x^{7}-9 x+2\right)^{\prime} \\
& =8\left(8 x^{7}-9 x+3\right)^{7}\left(56 x^{6}-9\right)
\end{aligned}
$$

Answer $h^{\prime}(x)=8\left(8 x^{7}-9 x+3\right)^{7}\left(56 x^{6}-9\right)$

$$
\text { \#2) If } \begin{aligned}
f(x) & =\left(x^{4}+4\right)^{7}\left(x^{3}+9\right)^{5}, \text { find } f^{\prime}(x) \\
f^{\prime}(x) & =\left[\left(x^{4}+4\right)^{7}\right]^{\prime}\left(x^{3}+9\right)^{5}+\left(x^{4}+4\right)^{7}\left[\left(x^{3}+9\right)^{5}\right]^{\prime} \\
& =7\left(x^{4}+4\right)^{6}\left(x^{4}+4\right)^{\prime}\left(x^{3}+9\right)^{5}+\left(x^{4}+4\right)^{7}(5)\left(x^{3}+9\right)^{4}\left(x^{3}+9\right)^{\prime} \\
& =7\left(x^{4}+4\right)^{6}\left(4 x^{3}\right)\left(x^{3}+9\right)^{5}+\left(x^{4}+4\right)^{7}(5)\left(x^{3}+9\right)^{4}\left(3 x^{2}\right) \\
& =x^{2}\left(x^{4}+4\right)^{6}\left(x^{3}+9\right)^{4}\left[7 \cdot 4 x\left(x^{3}+9\right)+5 \cdot 3\left(x^{4}+4\right)\right] \\
& =x^{2}\left(x^{4}+4\right)^{6}\left(x^{3}+9\right)^{4}\left[28 x^{4}+252 x+15 x^{4}+60\right] \\
& =x^{2}\left(x^{4}+4\right)^{6}\left(x^{3}+9\right)^{4}\left[43 x^{4}+252 x+60\right]
\end{aligned}
$$

Answer $f^{\prime}(x)=x^{2}\left(x^{4}+4\right)^{6}\left(x^{3}+9\right)^{4}\left[43 x^{4}+253 x+60\right]$

$$
\begin{aligned}
\text { \#3) If } w(x) & =\left(\frac{2 x-2}{3 x+5}\right)^{4} \text { find } w^{\prime}(x) . \\
w^{\prime}(x) & =4\left(\frac{2 x-2}{3 x+5}\right)^{3}\left(\frac{2 x-2}{3 x+5}\right)^{\prime} \\
& =4 \frac{(2 x-2)^{3}}{(3 x+5)^{3}} \frac{(2 x-2)^{\prime}(3 x+5)-(2 x-2)(3 x+5)^{\prime}}{(3 x+5)^{2}} \\
& =\frac{4(2 x-2)^{3}}{(3 x+5)^{3}} \cdot \frac{2(3 x+5)-(2 x-2)(3)}{(3 x+5)^{2}} \\
& =\frac{4(2 x-2)^{3} \cdot(6 x+10-6 x+6)}{(3 x+5)^{5}} \\
& =\frac{4(2 x-2)^{3}(16)}{(3 x+5)^{5}} \\
\text { Answer } w^{\prime}(x) & =\frac{4(2 x-2)^{3}(16)}{(3 x+5)^{5}}
\end{aligned}
$$

\#4) $\frac{d}{d x}\left[\sin \left(\cos \left(x^{2}+2 x+1\right)\right)\right]$

$$
\begin{aligned}
& =\cos \left(\cos \left(x^{2}+2 x+1\right)\right) \cdot\left[\cos \left(x^{2}+2 x+1\right)\right]^{\prime} \\
& =\cos \left(\cos \left(x^{2}+2 x+1\right)\right)\left(-\sin \left(x^{2}+2 x+1\right)\right) \cdot\left(x^{2}+2 x+1\right)^{\prime} \\
& =\cos \left(\cos \left(x^{2}+2 x+1\right)\right)\left(-\sin \left(x^{2}+2 x+1\right)\right) \cdot(2 x+2) \\
& =-(2 x+2) \cos \left(\cos \left(x^{2}+2 x+1\right)\right) \sin \left(x^{2}+2 x+1\right)
\end{aligned}
$$

$$
\text { Answer } \frac{d}{d}\left[\sin \left(\cos \left(x^{2}+2 x+1\right)\right)\right]=-(2 x+2) \cos \left(\cos \left(x^{2}+2 x+1\right)\right) \sin \left(x^{2}+2 x+1\right)
$$

\#5) If $k(x)=\left(\sec \left(3 x^{2}-1\right)\right)^{8}$ find $k^{\prime}(x)$

$$
\begin{aligned}
K^{\prime}(x) & =8 \sec ^{7}\left(3 x^{2}-1\right) \cdot\left[\sec \left(3 x^{2}-1\right)\right]^{\prime} \\
& =8 \sec ^{7}\left(3 x^{2}-1\right) \cdot \sec \left(3 x^{2}-1\right) \tan \left(3 x^{2}-1\right)\left(3 x^{2}-1\right)^{\prime} \\
& =8 \sec ^{7}\left(3 x^{2}-1\right) \cdot \sec \left(3 x^{2}-1\right) \tan \left(3 x^{2}-1\right)(6 x) \\
& =48 x \sec ^{8}\left(3 x^{2}-1\right) \tan \left(3 x^{2}-1\right)
\end{aligned}
$$

Answer $k^{\prime}(x)=48 x \sec ^{8}\left(3 x^{2}-1\right) \tan \left(3 x^{2}-1\right)$

$$
\text { \#6) } \begin{aligned}
\frac{d}{d x}\left[\frac{\tan (x)}{\csc ^{2}(x)-\cot ^{2}(x)}\right] & =\frac{d}{d x}\left[\frac{\tan (x)}{1}\right] \\
& =\frac{d}{d x}[\tan (x)] \\
& =\sec ^{2}(x)
\end{aligned}
$$

$$
\text { Answer } \frac{d}{d x}\left[\frac{\tan (x)}{\csc ^{2}(x)-\cot ^{2}(x)}\right]=\sec ^{2}(x)
$$

Exam Review 4

Plumber's Crack In a Can
\#7) While bending down to fetch a mishandled Funyun, George had a stupendous idea: He would sell Cans O’Crack to plumbers who were too shy to display their own cracks. His cost function for producing Cans $\mathrm{O}^{\prime} \mathrm{Crack}$ is $C(x)=$ $\sqrt{5 x^{2}+29}$ dollars, where x is the number of cans produced.
a. Find the marginal cost function
b. Evaluate $M C(x)$ when 10 cracked corns have been produced and interpret your answer.

$$
9 . \begin{aligned}
C(x) & =\left(5 x^{2}+29\right)^{\frac{1}{2}} \\
M C(x) & =\frac{1}{2}\left(5 x^{2}+29\right)^{-\frac{1}{2}}\left(5 x^{2}+29\right)^{\prime} \\
& =\frac{10 x}{2 \sqrt{5 x^{2}+29}} \\
M C(x) & =\frac{5 x}{\sqrt{5 x^{2}+29}}
\end{aligned}
$$

$$
\begin{aligned}
M C(10) & =\frac{5(10)}{\sqrt{5(10)^{2}+29}} \\
& =\frac{50}{\sqrt{5(100)+29}} \\
& =\frac{50}{\sqrt{500+29}} \\
& =\frac{50}{\sqrt{529}} \\
& =\frac{50}{23} \\
M C(10) & =\$ 2.17 / \text { Can }
\end{aligned}
$$

when 10 cans have been made, the total profit is increasing by $\$ 2.17$ per can.

George's Headache
\#8) After making $\$ 0.35$ from his Cans O’Crack venture, George decided to celebrate. While jumping on his bed (read: frameless mattress), he bumped his head on the skylight (read: whole in roof). George decides to pop an
Advil to ease his pain. The strength of George's reaction to a dose of x milligrams of Advil is $R(x)=2 x \sqrt{10-\frac{1}{2} x}$ for $0 \leq x \leq 20$. If $R^{\prime}(x)$ is called the sensitivity of the Advil, find George's sensitivity to the Advil for a dose of 10 mg . (Use a sentence answer.)

$$
\begin{aligned}
& R^{\prime}(x)=(2 x)^{\prime}\left(10-\frac{1}{2} x\right)^{\frac{1}{2}}+2 \times\left(\left(10-\frac{t}{2} x\right)^{7}\right)^{\prime} \\
& =2\left(10-\frac{1}{2} \times\right)^{\frac{1}{2}}+2 \times\left(\frac{1}{2}\right)\left(10-\frac{1}{2} x^{4}\left(10 \cdot \frac{1}{4}\right)^{\prime}\right. \\
& =2\left(10 \cdot \frac{1}{2} x\right)^{\frac{1}{2}}+x\left(10-\frac{1}{2} x\right)^{-\frac{1}{2}}\left(-\frac{1}{2}\right) \\
& \text { GiF: } \frac{1}{2}\left(10-\frac{1}{2} x x^{-\frac{1}{2}}\right. \\
& =\frac{1}{2}\left(10-\frac{1}{2} x\right)^{-\frac{1}{2}}\left[4\left(10-\frac{1}{2} x\right)-x\right] \\
& =\frac{1}{2 \sqrt{10-\frac{1}{2} x}}[40-2 x-x] \\
& R^{\prime}(x)=\frac{40 \cdot 3 x}{2 \sqrt{10 \cdot \frac{1}{2} x}}
\end{aligned}
$$

