# Basic Derivative Rules <br> Chapter 2 Review II <br> Optional 

\#1) Find the equation for the tangent line to the curve $f(x)=3 x^{2}-2 x+4$ at $x=1$. Write the answer in slope-intercept form.
\#2) The temperature of a patient in a hospital on day $x$ of an illness is given by in $T(x)=-x^{2}+5 x+$ 100 degrees Fahrenheit (for $1<x<5$ ).
a. Find $T^{\prime}(x)$
b. Use your answer from part (a) to find the instantaneous rate of change of temperature on day 3
c. Interpret your answer from part (b)
\#3) If $f(p)=\frac{10}{p}-9 \sqrt[3]{p^{5}}+17$ find $\frac{d f}{d p}$
\#4) If $f(x)=\frac{54}{\sqrt{x}}+12 \sqrt{x}$ find $\left.\frac{d f}{d x}\right|_{x=9}$
\#5) Why is the derivative referred to as an "instantaneous" rate of change rather than just an "average" rate of change?

## Basic Derivative Rules <br> Chapter 2 Review II <br> Optional

\#6) George finds the total paints chips he can eat after finishing a gallon of milk is $P(x)=0.02 x^{3 / 2}+$ 3000 chips, where $x$ is the seconds after drinking the milk.
a. Find $P^{\prime}(x)$.
b. Find $P^{\prime}(10,000)$.
c. Interpret your answer from (b)
\#8) Differentiate $f(x)=\frac{x^{5}+x^{3}+x}{x^{3}+x}$
\#9) Differentiate $f(x)=x \ln x-x$
\#10) Differentiate $f(x)=e^{x}+x^{e}$

