\#1) Find the limits by using any method. Then, circle which method you used.

$$
\begin{aligned}
\lim _{x \rightarrow 1} \frac{x^{2}-4}{x^{2}-4 x+4} & =\frac{(1)^{2}-4}{(1)^{2}-4(1)+4} \\
& =\frac{1-4}{1-4+4} \\
& =\frac{-3}{1} \\
& =-3
\end{aligned}
$$

Answer: $\lim _{x \rightarrow 1} \frac{x^{2}-4}{x^{2}-4 x+4}=-3$

Graphing

Table

Substitution
\#2) Use the graph to state the limit.

\#3)

$$
\begin{aligned}
& \text { If } f(x)=\frac{9}{x} \text { find } f^{\prime \prime}(x) . \\
& f(x)=9 x^{-1} \\
& f^{\prime}(x)=-9 x^{-2} \\
& f^{\prime \prime}(x)=18 x^{-3}
\end{aligned}
$$

Answer $f^{\prime \prime}(x)=\frac{18}{x^{3}}$
\#4) Find the equation for the tangent line to the curve $f(x)=6 x^{2}+8 x-22$ at $x=2$. Write the answer in slopeintercept form.

Point (1) $x=2$

$$
\begin{aligned}
f(2)= & 6(2)^{2}+8(2)-22 \\
& =6(4)+16-22 \\
& =24-6 \\
f(2) & =18 \\
& (2,18)
\end{aligned}
$$

$$
\begin{gathered}
\text { Slope © } x=2 \\
f^{\prime}(x)=12 x+8 \\
f^{\prime}(2)=12(2)+8 \\
f^{\prime}(2)=24+8 \\
f^{\prime}(2)=32 \\
m=32
\end{gathered}
$$

Point-Slpe form

$$
y-y_{1}=m\left(x-x_{1}\right)
$$

$$
y-(18)=32(x-(2))
$$

$$
y-18=32 x-64
$$

$$
y=32 x+46
$$

Answer Slope-intercept form $\quad y=32 x+46$
\#5) If $h(x)=\left(6 x^{3}-12 x+19\right)(x+8)$ find $\frac{d h}{d x}$.

$$
\begin{aligned}
\text { \#5) If } h(x)=\left(6 x^{3}-12 x+19\right)(x+8) \text { find } \frac{d}{d x} \\
\begin{aligned}
\frac{d h}{d x} & =\frac{d}{d x}\left(6 x^{3}-12 x+19\right)(x+8)+\left(6 x^{3}-12 x+19\right) \frac{d}{d x}(x+8) \\
& =\left(18 x^{2}-12\right)(x+8)+\left(6 x^{3}-12 x+19\right)(1) \\
& =18 x^{3}+144 x^{2}-12 x-96+6 x^{3}-12 x+19 \\
& =24 x^{3}+144 x^{2}-24 x-77
\end{aligned} .
\end{aligned}
$$

$$
\text { Answer } \frac{a n}{d x}=24 x^{3}+144 x^{2}-24 x-77
$$

\#6) If $h(x)=\left(8 x^{7}-9 x+2\right)^{8}$, find $h^{\prime}(x)$

$$
\begin{aligned}
h^{\prime}(x) & =8\left(8 x^{7}-9 x+2\right)^{7} \cdot\left(8 x^{7}-9 x+2\right)^{\prime} \\
& =8\left(8 x^{7}-9 x+2\right)^{7}\left(56 x^{6}-9\right)
\end{aligned}
$$

Answer $h^{\prime}(x)=8\left(8 x^{7}-9 x+2\right)^{7}\left(56 x^{6}-9\right)$

$$
\text { \#7) If } \begin{aligned}
f(x) & =\left(x^{4}+4\right)^{7}+\left(x^{3}+9\right)^{5}, \text { find } f^{\prime}(x) \\
f^{\prime}(x) & =7\left(x^{4}+4\right)^{6}\left(x^{4}+4\right)^{\prime}+5\left(x^{3}+9\right)^{4}\left(x^{3}+9\right)^{\prime} \\
& =7\left(x^{4}+4\right)^{6}\left(4 x^{3}\right)+5\left(x^{3}+9\right)^{4}\left(3 x^{7}\right) \\
& =28 x^{3}\left(x^{4}+4\right)^{6}+15 x^{2}\left(x^{3}+9\right)^{4}
\end{aligned}
$$

Answer $f^{\prime}(x)=28 x^{3}\left(x^{4}+4\right)^{6}+15 x^{2}\left(x^{3}+9\right)^{4}$ Exam Review 2
\#8) If $w(x)=\left(\frac{2 x-2}{3 x+5}\right)^{4}$ find $w^{\prime}(x)$.

$$
\begin{aligned}
w^{\prime}(x) & =4\left(\frac{2 x-2}{3 x+5}\right)^{3} \cdot\left(\frac{2 x-2}{3 x+5}\right)^{\prime} \\
& =4 \frac{(2 x-2)^{3}}{(3 x+5)^{3}} \cdot \frac{(2 x-2)^{\prime}(3 x+5)-(2 x-2)(3 x+5)^{\prime}}{(3 x+5)^{2}} \\
& =\frac{4(2 x-2)^{3}}{(3 x+5)^{3}} \cdot \frac{2(3 x+5)-(2 x-2)(3)}{(3 x+5)^{2}} \\
& =\frac{4(2 x-2)^{3}}{(3 x+5)^{3}} \cdot \frac{6 x+10-6 x+6}{(3 x+5)^{3}} \cdot \frac{16}{(3 x+5)^{2}} \\
& =\frac{64(2 x+5)^{2}}{(3 x+5)^{5}}
\end{aligned}
$$

\#9) $\frac{d}{d x}[\sin (x) \csc (x)]=\frac{d}{d x}(1)$

$$
=0
$$

Answer $\frac{d}{d x}[\sin (x) \csc (x)]=$

$$
\text { \#10) If k(x)} \begin{aligned}
& =5 x^{3}(-6 x+1)^{8} \text { find } k^{\prime}(x) \\
K^{\prime}(x) & =\left(5 x^{3}\right)^{\prime}(-6 x+1)^{8}+\left(5 x^{3}\right)\left[(-6 x+1)^{8}\right]^{\prime} \\
& =15 x^{2}(-6 x+1)^{8}+5 x^{3}(8)(-6 x+1)^{7}(-6 x+1)^{\prime} \\
& =15 x^{2}(-6 x+1)^{8}+5 x^{3}(8)(-6 x+1)^{7}(-6) \\
& =5 x^{2}(-6 x+1)^{7}[3(-6 x+1)+x(8)(-6)] \\
& =5 x^{2}(-6 x+1)^{7}[-18 x+3-48 x] \\
& =5 x^{2}(-6 x+1)^{7}[-66 x+3]
\end{aligned}
$$

Answer $k^{\prime}(x)=5 x^{2}(-6 x+1)^{7}[-66 x+3]$

$$
\text { \#11) } \begin{aligned}
\frac{d}{d x}\left[\frac{\operatorname{can}(x)}{\csc ^{2}(x) \cot ^{2}(x)}\right] & =\frac{d}{d x}\left[\frac{\tan (x)}{\left(1+\cot ^{2}(x)-\cot ^{2}(x)\right.}\right] \\
& =\frac{d}{d x}\left[\frac{\tan (x)}{1}\right] \\
& =\frac{d}{d x}[\tan (x)] \\
& =\sec ^{2}(x)
\end{aligned}
$$

$$
\text { Answer } \frac{d}{d x}\left[\frac{\tan (x)}{\csc ^{2}(x)-\cot ^{2}(x)}\right]=\operatorname{Sec}^{2}(x)
$$

\#12) After t hours a passenger train is $s(t)=24 t^{2}-2 t^{3}$ miles due north of its starting point (for $0 \leq t \leq 12$).
a. Find its velocity at time $\mathrm{t}=5$ hours. Write your answer as a sentence.

$$
\begin{aligned}
v(t) & =48 t-6 t^{2} \\
v(5) & =48(5)-6(5)^{2} \\
& =240-6(25) \\
& =240-150 \\
v(5) & =90 \mathrm{mi} / \mathrm{h} \text { North }
\end{aligned}
$$

Five hours after departing, the passenger train's velocity is 90 miles per hour due north.
b. Find its acceleration at time $t=5$ hours. Write your answer as a sentence.

$$
\begin{aligned}
a(t) & =48-12 t \\
a(5) & =48-12(5) \\
& =48-60 \\
a(5) & =-12
\end{aligned}
$$

Five hours after departing, the passenger train's velocity is decreasing by 12 miles per hour each hour.
\#13) The population of a city t years from now is predicted to be $P(t)=0.25 t^{3}+5 t+200$ people.
a. $\quad P(10)=500$
Answer Interpretation $=$ Ten years from now the city's population will be 500 people..$~$
b. $\quad P^{\prime}(10)=80$

Answer Interpretation =
Ten years from now the city's population will be growing by 80 people per year.
c. $\quad P^{\prime \prime}(10)=15$

Answer Interpretation =
Ten years from now the city's population growth rate will be increasing by 15 people per year each year.
\#14) A company's cost function is $C(x)=5 x+100$ dollars, where x is the number of units.
a. $\quad M A C(20)=-.25$

Answer Interpretation:
After 20 units have been produced, the average profit per unit is decreasing by 25\$ per unit.

